Writing Scratch/BYOB code on paper

You might be asked to write Scratch/BYOB code on exams, so we’ve developed a technique for writing it on
paper. There are a few key things to notice:

o

©)
O

We write variables in UPPERCASE.

We change spaces between words in block names to dashes (this makes it much easier to read).
Parentheses mark the start and end of a parameter list, and we separate consecutive parameters by
commas

We use indentation just as Scratch/BYOB does, to help us understand what is “inside” the i f, else,

and other Control structures.

When you want to write a list of things, write them with an open . _
parenthesis, then the first item, second item, etc (separated by spaces) M berty

and when you're done, put a closed parenthesis. If any of your items are .
a sentence, you have to put quotes around the sentence. So, for

example, the following list of three things would be written as the

= length: 2

4

equivalent 3-element-list:
m (life liberty "pursuit of happiness").

Similarly, a nested list just shows up as a nested set of parenthesis. So the
following would be written as) m
m ((Love 5) (Hate 4) (The 10)).
>
If you want to pass in a function as argument, you have two options in BYOB: + =length: 2 2
use the grey-border or the more verbose the ()block green block. Here are
three new conventions: W Hate |
m The grey border is written as square brackets: [] - _
m Blanks are written as parenthesis with underscore _in the middle, but
common blocks that are passed in to HOFs can be simplified by just
their name (and not the parens and underscores)
m Return values are written as ==> value

So the following would be written as:
m Map[()*(_)]Reduce[(_)+(_) lover((1 20 3 10))

==> 510
+ = length: =

+ = lengthe 2 o

g e |
g

+ = lengthe 2 o

A

or, in the more simplified (and preferred) format: .
m Map[*]Reduce[+ Jover((1 20 3 10)) ==> 510

€D

Map 'LII. *) Reduce 'L.I. + @ over

list [1 {20 [3[10 4 »

If you prefer to use the the ()block green block, it could also be written:

m Map(the((_)*(_))block)Reduce(the((_)+(_))block)over((1 20 3 10))

==> 510
or, in the more simplified (again, preferred) format:
m Map (the (*)block)Reduce (the (+)block)over((1 20 3 10)) ==> 510

VLR &0

Map [the (0 block ' Reduce

the (S block | over

(182003 110)

Here’s a sample (and a familiar piece of BYOB code):

F
downup word

join words

word .18 all but first letter of word

word

...and here’s how we would write it on an exam using our technique:

downup (WORD)
if length-of (WORD) < 2
report (WORD)
else
report (join-words (WORD, downup(all-but-first-letter-of (WORD)), WORD))

Here’s how you could write the factorial-of block from lab.

factorial-of (NUM)

if NUM = 1
report (1)
else

report (NUM * factorial-of (NUM - 1))

List Constructors
When given two lists...

adjoin

- &8

+ = length:5 4

to

. . O e ™
adjoin g b

append ()

dump
%ﬁ @ ﬁ-ﬂf@\ -

L
append (IRIEIBRED (ZIEIZIRID

+ & length:7 4

list

T T T m mm " emammmm
ist (Z3ENEND I

While it appears that list constructors adjoin and append
modify (i.e., stretch) the second input list, they don't
change their input lists at all. Instead, they return a new
structure.

Adjoin takes exactly 2 arguments
while append and list take as
many arguments as you want.

.berkeley.edu

adjoin(
adjoin(
adjoin (
adjoin(
adjoin(
adjoin(
adjoin(
adjoin(
adjoin(

append (
append (
append (
append (
append (
append (
append (
append (
append (

ITEM LIST
x, ’ z)
() , z)
(r g b) , z)
X , ())
() , ())
(r gb) , ())
x , (emyk))
() , (emyk))
(rgb) , (ecmyk))

LIST1 LIST?2
X , z)
() , z)
(r gb) , z)
x , ())
() , ())
(r g b) , ())
X , (emyk))
() , (emyk))
(rgb) , (cmyk))

ELEMENT1 ELEMENT2
list(X , z)
list(0 , z)
list((r g b) , z)
list(x ' ())
list(0 ' 0)
list((r g b) , 0)
list(X , (emyk))
list(O ., (emyk)
list((r gb) , (cmyk))

List Constructors

These are three very common list constructors in the Variables menu. Each returns a new list and doesn't modify the
input arguments. This is meant to supplement the "List Constructors" CS lllustrated handout.

e Available via ToolSprite sprite or tools. ypr project, and akes exactly two arguments

In BYOB it is shown as "adjoin ITEM to LIST" i.e.,

e Reports a new list, the result of attaching the ITEM to the front of LIST, which is shown on the left if we're writing
BYOB code on paper (as below), and in BYOB visually as the new first element in the top (1) slot.
e Thereis a similar block "adjoin to LIST this item NEW on the right" i.e.,

that attaches NEW to the end (right) of LIST if we're writing BYOB code on

paper, and in BYOB is shown visually in the last slot on the bottom.

==>
==>
==>

==>
==>
==>
==>
==>
==>
==>
==>
==>

ERROR,
ERROR,
ERROR,

ERROR,
ERROR,
ERROR,
ERROR,
()

(r g b)
ERROR,
(c my

(r g bcmy k)

z)
) z)
r g b) z)
())
) ()
rgb) ())
(cmy k))
) (¢ my k)
r gb) (cm

2nd
2nd
2nd

argument
argument
argument

to adjoin has to be a list
to adjoin has to be a list
to adjoin has to be a list

list w/1 element in it, an empty 1ist
;s a list of the 3-element 1ist (r g b)

;; as in CS Illustrated handout

* Available via ToolSprite sprite or tools.ypr project, and takes any number of arguments (even 0)

*In BYOB it looks like or or or ...

* Reports the result of merging all input lists into a single list. If the inner lists have lists, it doesn't merge those.

all
all
all
all

all
k)

arguments
arguments
arguments
arguments

to
to
to
to

append
append
append
append

must
must
must
must

be
be
be
be

lists
lists
lists
lists

arguments to append must be lists

;; as 1in CS Illustrated handout

Built-in to BYOB, and takes any number of arguments (even 0)

In BYOB it looks like (0 o (Z0 NN . CEX D,

o Reports the result of wrapping all the input elements in a list, in the same order they came in.

;; as in CS Illustrated handout

	Page1
	Page2
	Page3
	Page4

