
Discussion 12: Dictionaries & Recursion in Python SOLUTIONS

Planning Your Phase 1

1. In the table below, write Python code to execute the listed commands on class_dict.

class_dict = {‘Math’:‘1A’, ‘English’:‘R1A’}

Add the key ‘CS’ with the
value ‘10’

 class_dict[‘CS’] = ‘10’

Access the value of ‘Math’ class_dict[‘Math’]

Change the value of ‘Math’ to
‘1B’

 class_dict[‘Math’] = ‘1B’

Check if ‘UGBA’ is a key in
class_dict

 ‘UGBA’ in class_dict

Check if ‘10’ is a value in
class_dict

 ‘10’ in class_dict.values()

Get a list of the keys in
class_dict

 list(class_dict)

**Note: by default, when you try to perform an operation on a dictionary (e.g., iterating
through it, checking whether it contains a key, converting it to a list), Python will look
only at the keys. So ‘UGBA’ in class_dict is actually checking whether ‘UGBA’ is
present in the keys of the class_dict, and list(class_dict) generates a list of only
keys. We could also write ‘UGBA’ in class_dict.keys() and
list(class_dict.keys()), but this is redundant and unnecessary.

2. Can you access a key, value pair in a dictionary by its index?

No, the pairs in a dictionary are unordered and thus do not have indices.

3. Are keys and/or values in a dictionary returned in a predictable order?

No, the items in a dictionary are unordered. See CS61B for the reason why.

4. Can dictionaries have duplicate keys? What about duplicate values?

A dictionary may not contain duplicate keys. If you try to insert a duplicate key, the
value assigned to the corresponding original key will simply be overwritten.

Duplicate values are fine.

Dictionary Practice

fav_numbers = {‘Schuyler’: 18, ‘Brendan’: 12, ‘Mansi’: 7, ‘Aaron’: 152}

1. On the lines below, write Python code that increments each person’s favorite number by the
length of their name.

for person in fav_numbers:
 fav_numbers[person] += len(person)

2. On the lines below, write Python code that prints a list of all people from fav_numbers
whose favorite numbers are even.

names = []
for person in fav_numbers:

if fav_numbers[person] % 2 == 0:
 names.append(person)
print(names)

3. Write a function merge_dicts that takes two dictionaries as input, and returns a new
dictionary that contains all entries from both input dictionaries. Your function should not modify

the inputs. You can assume that both input dictionaries have strings as keys and numbers as
values. For any keys present in both input dictionaries, the corresponding value in the output
dictionary should be the sum of the values in the inputs.

>>> dict1 = {‘Schuyler’: 10, ‘Brendan’: 15}
>>> dict2 = {‘Aaron’: 5, ‘Mansi’: 20, ‘Schuyler’: -10}
>>> merge_dicts(dict1, dict2)
{‘Schuyler’: 0, ‘Aaron’: 5, ‘Mansi’: 20, ‘Brendan’: 15}

4. Assume we have defined food_dict in the Python interpreter, as below. What will be
displayed after each of the following lines executes? If the result is an error message, just
write "Error." Assume that the commands are executed independently, NOT sequentially.

>>> food_dict = {"fruit": "apple", "veggie": "carrot", "beverage": "water",
"grain": "rice"}

>>> len(food_dict)

4

>>> list(food_dict)

['beverage', 'fruit', 'grain', 'veggie']

Note: You are not expected to write these items in any particular order.

>>> food_dict[0]

def merge_dicts(d1, d2):
new_dict = {}
for key in d1:

 new_dict[key] = d1[key]
for key in d2:

 if key in new_dict:
 new_dict[key] += d2[key]

else:
 new_dict[key] = d2[key]

return new_dict

Error

>>> (‘fruit’ in food_dict) and (‘apple’ in food_dict)

False

>>> ("fruit" in food_dict.keys()) and ("apple" in food_dict.values())

True

>>> for food in food_dict:
... food += "s"
>>> food_dict

{'beverage': 'water', 'fruit': 'apple', 'grain': 'rice', 'veggie': 'carrot'}

Notes: Again, order doesn’t matter. The keys in the dictionary don’t change
because we are only adding ‘s’ to the food variables, not the actual keys
in the dictionary. Remember that strings are immutable, as in Snap!.

>>> def recursion_is_fun(dict1, dict2): ...
if dict2 == {}:
... return dict1
... dict2.pop(list(dict2)[0])
... return recursion_is_fun(dict1, dict2)
>>> copy = food_dict
>>> recursion_is_fun(food_dict, copy)

{}

Notes: Dictionaries are mutable objects in Python, and thus behave exactly
like lists. To make a copy of a dictionary in Python, you must call the
DICT_NAME.copy() method.

>>> more_food = {"protein" : "chicken"}
>>> food_dict["more food"] = more_food

>>> food_dict

{'beverage': 'water', 'more food': {'protein': 'chicken'}, 'fruit': 'apple',
'grain': 'rice', 'veggie': 'carrot'}

Note: Again, order doesn’t matter.

Recursion in Python

1. In the table below, translate the Snap! code into Python. These Python snippets will be
useful for writing recursive functions.

 my_list[1:]

Note: This block doesn’t actually exist in
Snap!

 my_list[:-1]

 my_list[1:-1]

 [5] + my_list

 my_list + your_list

 my_list.append(5)

 my_list.pop()

Note: There are multiple ways to perform most of the operations above. The solutions
given are simply our preferences, not the only “correct” expressions.

2. Is it possible to apply the 'all but first of' and 'all but last of' python expressions above to a
string instead of a list? If so, how would we need to modify these expressions?

Yes, and you don’t need to change the expressions at all.

3. Is it possible to apply the 'all but first of' and 'all but last of' python expressions above to a
dictionary instead of a list? If so, how would we need to modify these expressions?

No. Items in dictionaries are unordered and thus the notion of “first” and “last” items
doesn’t make sense.

4. Which of the above python expressions, if any, actually modify the original list?

Only append and pop. All other expressions return a new list without modifying the
original.

5. Translate the following code from Snap! into Python:

6. Write a recursive function in Python that removes a given item from a list, as illustrated by
the examples below. It should create and return a new list, not mutate the input list.

>>> delete_elements(4, [4, 5, 6])
[5, 6]

def is_even_in(data):
if len(data) == 0:

return False
elif data[0] % 2 == 0:

return True
else:

return is_even_in(data[1:])

>>> delete_elements(7, [4, 5, 6])
[4, 5, 6]
>>> delete_elements(4, [4, 5, 6, 4])
[5, 6]

def delete_elements(item, lst):

if len(lst) == 0:

 return lst

elif lst[0] == x:

 return delete_elements(x, lst[1:])

else:

 return [lst[0]] + delete_elements(x, lst[1:])

