
Discussion 11: Python Data Structures

List Comprehension Warm-Up
1. Consider the Snap! code given below:

Translate this expression into Python using a list comprehension.

[word[0] for word in mylist if len(word) > 5]

2. Write a list comprehension over list_of_lists (a list of sublists) that calculates the sum
of each sublist and adds each sum to a new list. You can assume the sublists in
list_of_lists contain only numbers.

For example if list_of_lists = [[1, 2], [-5, 4]], your expression should output [3,
-1].

To find the sum of a list, you can call python’s built-in sum function on the list.
>>>sum([1, 2])

3

[sum(sublist) for sublist in list_of_lists]

3. Write a list comprehension that finds the index of an item in a list. You may assume that the
item appears only once in the list. If you get stuck, it may be easier to first write this function
using a for loop, then translate your code into a list comprehension.

def find_index(item, lst):

return [i for i in range(len(lst)) if item == lst[i]][0]

Planning Your Phase 1
1. In the table below, write Python code to execute the listed commands on class_dict.

class_dict = {‘Math’:‘1A’, ‘English’:‘R1A’}

Add the key ‘CS’ with the value ‘10’ class_dict[‘CS’] = ‘10’

Access the value of ‘Math’ class_dict[‘Math’]

Change the value of ‘Math’ to ‘1B’ class_dict[‘Math’] = ‘1B’

Check if ‘UGBA’ is a key in class_dict ‘UGBA’ in class_dict

Check if ‘10’ is a value in class_dict ‘10’ in class_dict.values()

Get a list of the keys in class_dict list(class_dict)

2. Can you access a key, value pair in a dictionary by its index?

 No; dictionaries are unsorted, so indices would have no consistency

3. Are keys and/or values in a dictionary returned in a predictable order?
 No; dictionaries are unsorted

4. Can dictionaries have duplicate keys? What about duplicate values?

Keys: No (each key must be unique)

Values: Yes (many keys may have the same value)

Dictionary Practice
fav_numbers = {‘Dan’: 18, ‘Alonzo’: 12, ‘Oski’: 7, ‘Carol Christ’: 152}

nums = [7, 12]

1. On the lines below, write Python code that increments each person’s favorite number by the
length of their name.
for person in fav_numbers:

fav_numbers[person] += len(person)

2. On the lines below, use a list comprehension to output a list of people whose favorite
numbers are in nums.

[name for name in fav_numbers if fav_numbers[name] in nums]

3. Write a function merge_dicts that takes two dictionaries as input, and returns a new
dictionary that contains all entries from both input dictionaries. Your function should not modify
the inputs. You can assume that both input dictionaries have strings as keys and numbers as
values. For any keys present in both input dictionaries, the corresponding value in the output
dictionary should be the sum of the values in the inputs.

>>> dict1 = {‘Dan’: 10, ‘Oski’: 15}

>>> dict2 = {‘Alonzo’: 5, ‘Oski’: 20, ‘Dan’: -10}

>>> merge_dicts(dict1, dict2)

{‘Dan’: 0, ‘Alonzo’: 5, ‘Oski’: 35}

4. Assume we have defined food_dict in the Python interpreter, as below. What will be
displayed after each of the following lines executes? If the result is an error message, just
write "Error." Each subproblem is independent and does not depend on the other
subproblems.

>>> food_dict = {"fruit": "apple", "veggie": "carrot", "beverage": "water",

"grain": "rice"}

>>> len(food_dict)

4

>>> list(food_dict)

[‘fruit’, ‘veggie’, ‘beverage’, ‘grain’] (we cannot rely on the order)

>>> food_dict[0]

Error (0 is not a key)

>>> (‘fruit’ in food_dict) and (‘apple’ in food_dict)

False (this will check the keys of food_dict and ‘apple’ is not a key)

>>> ("fruit" in food_dict.keys()) and ("apple" in food_dict.values())

True

>>> for food in food_dict:

... food += "s"

>>> food_dict

{‘fruit’: ‘apple’, ‘veggie’: ‘carrot’, ‘beverage’: ‘water’, ‘grain’:
‘rice’}

>>> def recursion_is_fun(dict1, dict2):

... if dict2 == {}:

... return dict1

... dict2.pop(list(dict2)[0])

... return recursion_is_fun(dict1, dict2)

>>> copy = food_dict

>>> recursion_is_fun(food_dict, copy)

{}

>>> more_food = {"protein": "chicken"}

>>> food_dict["more food"] = more_food

>>> food_dict

{‘fruit’: ‘apple’, ‘veggie’: ‘carrot’, ‘beverage’: ‘water’, ‘grain’: ‘rice, ‘more food’: {‘protein’: ‘chicken’}}

