
Discussion 6: Testing & Algorithmic Complexity

Testing

1. We try to test our code, but we get an error. What does it mean and how can we fix it?

DO NOT WORRY ABOUT THIS QUESTION. IT IS OUTDATED; THE TESTING

BLOCK HAS CHANGED.

Algorithmic Complexity: Definitions
1. What is runtime? How do we measure it?
Runtime is a measure of the amount of time a procedure takes to execute. However, since
timing computer programs using sub-seconds is impractical, we instead measure runtime as
the number of steps a procedure takes to execute, as a function of the input size.

2. If a function runs in O(n) time, that means it runs…
O in linear time at worst O in linear time on average O in linear time at best

Understanding Runtimes
1. Fill in the following chart:

Runtime Notatio
n

As input size increases
by…

The number of steps
change by…

Constant O(1) x2 +0
Logarithmic (base 2) O(logn) x2 +1
Linear O(n) x2 x2
Quadratic O(n2) x2 x4
Exponential (base 2) O(2n) +1 x2

2. In the following diagram, which is the best runtime? The worst?

Runtime Practice
1. Find the runtime of each of the following blocks or processes.

a. b.

Constant

 Linear

c. d. This process takes in a value and a
list and searches through every item in
the list one by one to see if it can find
that value.

 Linear

e. This process takes in a value and a
sorted list and searches for the value in
the sorted list. Every iteration of the
algorithm, it figures out which half of the
list the value would be in, and then only
searches in that half of the list.

 Logarithmic

Quadratic

f. g. You know a secret, and you want to share it
with the world. In state 0, you are the only
person who knows the secret. Then in state
1, you share the secret with two friends, so
three total people know the secret. Then in
state 2, both of your friends tell two of their
friends, so seven total people know the
secret. This pattern (of people sharing the

secret with two friends) continues
indefinitely. As a function of the state, what
is the order of growth of the number of
people who know the secret?

Constant Exponential

More Runtime Practice

What is the runtime of this block when n is less than 7?

Constant

What is the runtime of the block when n is greater than 7?

Constant

Why?

Generally, we ask runtime questions in a theoretical context.
However, here, we are given the input size n ahead of time, and we
know it is a constant number. There is no way to consider what
happens to the runtime as n goes to infinity, because we are already

told it is upper bounded by 6, which is a constant. Thus, the runtime
is also constant when n is less than 7.

What do the following calls report? The first one is done for you.

Challenge Problems

1. What does the following expression do? Assuming that all helper (non-HOF) blocks operate
in constant time, what is its runtime?

This block reports whether all items in the input list are even (evenly divisible by 2). It reports
True if all items are even, and False otherwise. Map and combine both execute in linear time,
and here operate sequentially (map runs first, then, after finishing, combine runs using the
output of map as its input list). So, assuming all helper blocks take constant time, the overall
runtime here is O(n+n): n for map and n for keep, assuming that the input list contains n items.
This simplifies to O(2n), but since we ignore linear factors in big O notation, we conclude that
the block's runtime is O(n).

2. Assume that the word  list block executes in linear time as a function of the length of the
input word. If myList is a list of n words, each of length n, what is the runtime of the following
expression?

Assuming myList contains n items, map will execute the word → list function n times—once for
each item. How many steps does the word → list function take? Well, since it executes in
linear time and we're assuming that every item in myList is a word of length n, word → list will
take n steps to run on each individual word. The map is calling a function that takes n steps a
total of n times. Thus, the overall runtime here is O(n*n), or O(n2).

