Discussion [0b10] [2₁₀] [0x2]: Number Representation

Conversion

(a) Convert the following binary numbers into decimal.	Decimal	Binary	Hex
11001	0	0000	0
11001 →	1	0001	1
1001001 →	2	0010	2
	3	0011	3
(b) Convert the following decimal numbers into binary.	4	0100	4
12	5	0101	5
12→	6	0110	6
$64 \rightarrow _$	7	0111	7
127 →	8	1000	8
	9	1001	9
(c) Convert the following binary numbers into hex.	10	1010	А
	11	1011	В
$10011001 \rightarrow ___$	12	1100	С
11110111 →	13	1101	D
1100000011111111111101110 →	14	1110	E
	15	1111	F

Limits

- (a) What is the biggest number that can be represented with two decimal digits?
- (b) What is the biggest number that can be represented with three binary digits?
- (c) What is the biggest number that can be represented with four hexadecimal digits?
- (d) How many different numbers can you represent using three binary digits?

More Conversion Practice

Fill in the blanks.

Decimal	Binary	Hexadecimal
12		С
5		5
11	1011	
25	11001	
	10001	11
	11011	1B
8		
	1110	
		1E
		49

Challenge Problems

- (a) The original Pokemon are numbered 1-150. We want to store a binary encoding for all original Pokemon where each Pokemon has a binary code equivalent to their decimal number. How many bits do we need to use?
- (b) What is the encoding for Pikachu (#25)?
- (c) Ternary utilizes base 3 instead of base 2. For example, 10 in ternary is equivalent to 3 in decimal. Imagine that we wanted to store a ternary encoding for all 150 Pokemon where each Pokemon has a ternary code equivalent to their decimal number. What is the ternary encoding for Pikachu (#25)?