CS10 Fall 2017 Quest Answers

Question 1: Which is NOT a benefit of (the computer science definition of) Abstraction? It's easier to debug abstract ideas because they have no concrete form. (This is the common vernacular definition of Abstraction -- opposite of concrete -- but that's different from how it's used in Computer Science, which is to remove detail and generalize.
Question 2: What is the hex value of the expression: 10_{10} (decimal) $+101_{2}$ (binary)? 10_{10} is ten, and 101_{2} is five, so the sum is fifteen, which is $0 x F$.
Question 3: If the sprite starts in the middle of the stage facing up \& runs the script to the right, what is eventually drawn on the stage after the stage stops changing? This was directly from lab, it's a line.
Question 4: If the sprite starts in the middle of the stage facing up \& runs the script to the right, what is eventually drawn on the stage after the stage stops changing? This draws a triangle, since the pen continues to grow bigger and bigger until it's off the stage.
Question 5: If the output from Mystery is true, which can you say for sure? A must be true (so the if follows the "then" case), and B must be true (so it reports true).
Question 6: You realize you could replace the entire body of Mystery with a single report (as shown below). What could go in there so Mystery functions the same for all values of Boolean inputs A and B ? A and B (this follows from Question 5)

set pen size to 1	Question
pen down	
forever	$3 \quad 1 /$
turn 15 degrees	
change x by 10	
set pen size to 1	\checkmark
pen down	Question
forever	4 /l/
move 1 steps	
change pen size by	1

Question 7: What does it mean for a language to be "Turing Complete"? The language
was able to simulate a Universal Turing Machine; i.e, it was as powerful as any could be. (straight from lecture)
Question 8: We want to identify the maximum value in a list of one or more integers. Consider two versions of the algorithm below. Your job is to identify when they won't work. (A) Set a variable max to $\mathbf{0}$. Iterate through the list of integer values. For each item, if a data value is greater than the value of the variable max, set max to the data value. (B) Set a variable max to the first data value. Iterate through the list's remaining values. For each item, if a data value is greater than the value of the variable max, set max to the data value. (B) works for all input, (A) only fails when the maximum value is negative, since the initial value (0) will be larger than every value in the list, and the max will always be 0 .
Question 9: What is the running time of the algorithm described in the right column (B)? Linear, since there's constant work per step through the list (just a compare).
Question 10: You write a block to determine whether three values are all equal (when they are, it should return true, otherwise false). You test it and it's fine:

Your friend thinks it might have a subtle bug. Choose the inputs that will reveal the bug (if possible), one in which your program returns true but should return false, and vice versa.
(for each, select ONE per column, or if you believe that bug can't happen, choose the last row)

- Your program returns true but should return false: To make the program incorrectly return true when it shouldn't, we can either set B and C to be the same (but not "true") and A to be true. Then $B=C$ will be true, and A's value of true will be the same as the result of the $B=C$ test. Or, we could set B and C to be different, so that test will be false, but set A to be false.
- Your program returns false but should return true: To make the program incorrectly return false when it shouldn't, we just simply set A, B and C to be the same (but not "true").
Question 11: We love our powerful list processing tools of map \square and keep (This is an abstract visual representation so we can just focus on the blocks themselves, not the details of the inputs). For each of the following, which solution works using the fewest of these blocks? Note that there may have to be non-powerful blocks before and/or after calls to these 3 blocks, we only care about these 3 blocks.
Problem a: Given a list of temperatures in Fahrenheit, return a list of the equivalent temperatures in Celsius. map
Problem b: Given a list of the money in the pockets of all the students, return the total amount. None of these, that's combine +.
Problem c: Given a list of words, return a list with them all sorted alphabetically. None of these, that's complicated. It can be done with a clever combine, but that's quite difficult.

Problem d: Given a list of words, return a list of the lengths of all the words that start with X.

map keep

