

CS10 Midterm Exam - Summer 2019

Questions 1-4: What’s that Smell? It’s Potpourri! (3 points each, 12 points total)
Question 1:​ Which of the following points was NOT discussed in the Environment & Computing
Lecture?

⬤​ ​We have plenty of information on where and how our electronic waste is disposed of.

○ ​It is possible to repurpose old cell phones into bio-acoustic monitors and servers.

○ ​People who are most affected by eWaste pollution also tend to be most dependent on it.

○ ​Planned Obsolescence is the practice of creating devices with artificially limited lifespans.

○ ​Streaming and subscription-based services can help reduce the amount of eWaste we produce.

Question 2:​ ​Which of the following is NOT true from the Social Media and Virtual Communities
lecture?

○ ​Many new technologies are initially met with fear and suspicion: current attitudes towards the rise
of AI are not new.

⬤​ ​Google gets much of its big data from Google Home, which listens to your conversations and uses
the data from them.
○ ​Big Data is not only used to drive advertisements, but also to (hyper) customize technology to
users’ needs and lifestyles.

○ ​All of the above are true from the Social Media and Virtual Communities lecture.

Student ID Number: _______________________
Question 3:​ ​Below is a state tree for an imaginary game. Circle the appropriate outcome for each of
the states. We’ve filled the rightmost state out for you.

Question 4:​ ​Which of the following is true about the way we measure the runtime of a block?

⬤​ ​Since different computers run at different speeds, we measure the runtime of a block in terms of
the number of steps it takes, not the amount of time it takes.

○ ​Since time is very precise, we measure the runtime of a block in terms of the amount of time it
takes to run as opposed to the number of steps it takes.

○ ​We usually measure the best-case runtime of a block.

○ ​None of the above.

Question 5: Sign and Magnitude (3 points each, 9 points total)
So far, we have only learned how to represent positive numbers in binary. However, there are
schemes to represent negative numbers in binary as well. Consider the sign and magnitude scheme:
given a binary number, the leftmost bit represents the sign (if it’s 1, the number is negative, if it’s 0,
the number is positive), and the rest of the bits represent the number itself. For example, 0b1100​2
would be -0b0100​2​.

a. In the box to the right, write out the representation for -19 using
sign and magnitude.

First, we can find the representation for 19 in binary. 19 in binary is 0b10011. Since -19 is
negative, the first sign and magnitude digit must be 1. Therefore, we can represent -19 using
sign magnitude by putting a 1 in front of 10011, giving us 110011.

b. What is the ​minimum​ number (in decimal) we can represent

using 5 digits in sign and magnitude?

The minimum number will be the most negative number. Since the first digit represents the
sign, we want the first digit to be 1, representing a negative number. Since we want the
number that is most negative, we should maximize the other digits by having them all be 1’s.
The resulting sign and magnitude number is 11111. In decimal, this is -15.

Student ID Number: _______________________

c. What is the ​maximum​ number (in decimal) we can represent
using 5 digits in sign and magnitude?

To find the maximum number, we want a positive number, so the first digit should be 0. Since
we want the largest positive number, the remaining four digits, should be 1’s. The resulting
sign and magnitude number is 01111. In decimal, this is 15.

Student ID Number: _______________________
Question 6: Speeding Up (3 points)
If we have a program that is 50% parallelizable, how many cores would
we need to make it run 4 times as fast? Write your answer in the box to
the right. If it isn’t possible to achieve such speedup, you can write
“Impossible.”

From Amdahl’s Law, the maximum speedup of a program is . Here, we have p = . The1

1 − p 2
1

maximum speedup is therefore = 2, and we cannot achieve 4 times speedup.1
1 − 1/2

Question 7: Wow, these numbers are p-norm-ous! (4 points)
In mathematics, the ​p-norm​ is a function of a list of numbers. The output is a single number, the
p-norm​.

To calculate the ​p-norm​ of a list with ​n​ items:

● For each number in the list, find the absolute value and then raise the value to the power ​p​.
○ , , … , item_1| |p item_2| |p item_n| |p

● Sum the resulting values by adding them all together.
○ + + … + item_1| |p item_2| |p item_n| |p

● Raise this number to the power 1/​p​.
○ (item_1 item_2 … item_n)| |p + | |p + + | |p (1/p)

Example: the ​2-norm​ of the list is 5:
● |3|​2​ = 9, |-4|​2​ = 16 (find the absolute value of each item and raise to the power ​p​)
● 9 + 16 = 25 (sum the resulting values)
● 25​(½)​ = 5 (raise this number to the power 1/​p​)

Write a function that calculates the ​p-norm​ of a list. This function has two inputs: (1) a number ​p​ and
(2) a list of ​numbers​. Fill in the blanks to complete the function. Write this function using
higher-order functions. ​Do not​ use any loops or recursion for this question.

Hint: These blocks can be used to find the absolute value and to perform exponentiation,
respectively.

(p) norm of (numbers):

report

Student ID Number: _______________________

Question 8: Lists (of Lists) (4 + 3 + 2 = 9 points)

a. Write a function called ​max filter​ which takes in a (2-dimensional) list of lists of numbers and
reports a new (1-dimensional) list of numbers. Each value in the output list will be the
maximum value from the list at the corresponding index in the input list.
For example:

● If item 1 of the input list is , item 1 of the output list should be 3.

● If item 2 of the input list is , item 2 of the output list should be 10.

● If item 3 of the input list is , item 3 of the output list should be 9.

Here is an example call to the function:

Write this function in the box below. ​If you are able to write it using only higher-order
functions (no loops, no recursion), you will receive 2 bonus points.

Hint: You may use the function , which reports the maximum of two
numbers. You may assume that we have given you this function and do ​not​ need to write it
yourself.

Student ID Number: _______________________

Possible solution:

max filter (input):

Only using HOFs: add report and input list

max filter (input):

Fun fact: this process is an example of what is called ​convolution​ and is a popular technique
used in neural networks for artificial intelligence and machine learning!

b. Now, fill in the ​test​ block below to test the block you wrote in part (a). We left the three inputs
blank. Fill in the blanks by writing what should go in each blank on the lines below. Your test
case must be different from the example we showed above.

Using the example from part a (students are required to create their own example):

1.

2.

3.

Student ID Number: _______________________
c. Your friend has created a new representation of boards in Snap! They want to be able to

update an item of the board using the ​replace​ block. However, there seems to be a bug
because the result of the following code ​is not​ what they expected!

Here is their code:

As a reminder, here is an example of how boards are displayed in Snap!:

In the grid below, write out what ​BOARD​ would look like after running your friend’s code:
Hint: Remember that your friend’s code is buggy and the result of the block is ​not​ what they
initially expected!

 1

 1

 1

 1

 1

BOARD​ consists of 5 references to the same list, ​row​. If we replace item 2 of item 3 of
BOARD​ with 1, the second item of​ row​ will be set to 1. Since each of the 5 items of ​BOARD
references this list ​row​, all 5 rows of ​BOARD​ will have a 1 at index 2.

Student ID Number: _______________________

Question 9: Full of Lists (4 points each, 16 points total)
A ​full list ​is defined as a list that contains all of the numbers from 1-10. It may contain other numbers,
but as long as each number from 1-10 appears at least once (each number may appear multiple
times), the list is a ​full list​.

● [1, 2, 3, 4, 5]​ is not a full list​ because it doesn’t contain the numbers 6-10.
● [1, 10, 4, 2, 5, 3, 6, 9, 8, 7, 13] ​is a full list​ because it contains all of the numbers from 1-10.
● [10, 10, 9, 8, 8, 7, 6, 5, 4, 3, 2, 1] ​is a full list​ because it contains all of the numbers from 1-10.

Below, we’ve written various implementations of blocks that checks if a given list of positive integers
is a ​full list​. Some of these blocks, however, may be buggy. For each of the blocks below, indicate
an input that would report the incorrect value if passed into our block (if the block works correctly, just
write “correct”) and the runtime of the block. ​You may assume that the input list only contains
positive integers!

You may assume ​most​ Snap​!​ blocks run in constant time. However, the following blocks do not:

● The ​contains​ block runs in linear time in terms of the size of its input list.
● map​, ​keep​, and ​combine​ run their input function for every item of their input list.

A.

Buggy Input: ​[1] With this input, the block will report True, even though this is not a full list.

Runtime: ◯ constant ◯ logarithmic ​⬤ ​linear ◯ quadratic ◯ exponential
The ​map​ block will run ​contains​ for the numbers 1 to 10. Since ​contains​ runs in linear time, ​map
will run a linear function 10 times. Therefore, the ​map​ block takes linear time.

map​ reports a list of 10 booleans, which will be the input to ​combine​. ​combine​ will then run a
constant function over a list of length 10. Therefore, the ​combine​ block takes constant time.

Since we have a linear runtime, followed by a constant runtime, the overall runtime of this block is
linear.

Student ID Number: _______________________

B.

Buggy Input: ​[1] With this input, the block will report True, even though this is not a full list.

Runtime: ◯ constant ◯ logarithmic ​⬤​ linear ◯ quadratic ◯ exponential
Let ​n​ be the length of the input list. The for loop will run ​n​ times. Inside the for loop, ​missing
number?​ will always be False. As explained in part D, when the first input to ​and​ is False, Snap!
will short-circuit and evaluate the entire expression as False without checking the second input.
Therefore, ​contains​ will never be run. As a result, each loop iteration takes constant time, and the
overall runtime is linear.

Student ID Number: _______________________

C.

Buggy Input: ​correct

Runtime: ◯ constant ◯ logarithmic ​⬤​ linear ◯ quadratic ◯ exponential
The first for loop does not depend on the input size and is therefore constant. The second for loop
iterates through every ​item​ in ​list​ and performs constant operations inside. The second for loop is
therefore linear. ​combine​ will run a constant function over a list of length 10, and will therefore
take constant time.

We have a constant runtime, followed by a linear runtime, followed by a constant runtime.
Therefore, the overall runtime of the block is linear.

Student ID Number: _______________________

D.

As a review from discussion, in Snap​!​, the ​and​ and ​or​ blocks do something called “short circuiting,”
meaning that if they already know the output of the expression from the first input, they won’t bother
checking the rest of their inputs. For example:

Buggy Input: ​correct

Runtime: ◯ constant ◯ logarithmic ​⬤​ linear ◯ quadratic ◯ exponential
There will be 11 recursive calls: ​full list recursive​ (list) (10), ​full list recursive​ (list) (9), …, ​full list
recursive​ (list) (0). Except for n = 0, each of these recursive calls may run ​contains​, which takes
linear time. Therefore, ​contains​ will be run at most 10 times. Therefore, this block will run a linear
function at most 10 times, and the overall runtime is therefore linear.

Student ID Number: _______________________

Question 10: Go Bears! (4 points)
You are lost in the woods and want to make sure you get ​Home​ safely. However, you want to be careful to
avoid the bears! A location is safe if there is ​at least one​ path from the location to ​Home,​ without any bears
along the path. A path starts at a location and will always lead to ​Home​ (i.e. there are no dead-ends). You
cannot go backwards along a path. There will never be a bear at ​Home​, but there may be bears in the other
locations.

Write a block called ​safe path?​ which takes in a location and tells you if there is a path from the location to
Home​ without any bears.

Below is an example forest and some important blocks. Your ​safe path?​ block should work for any forest, not
just this example.

Block Description Calls using the example forest

Takes in a location and reports if
there is a path from the location
without any bears.

(for you to implement)

Takes in a location and reports if it
is home.

(for you to use in your solution)

Take in a location and reports if
there is a bear.

(for you to use in your solution)

Takes in a location and reports a
list of all the locations you can go
to next.

(for you to use in your solution)

Student ID Number: _______________________

safe path? (location):

Question 11: Another Homework Assignment? (3 points)
What is the code below an example of?

◯ race condition ⬤​ deadlock ◯ livelock ◯ none of the above

