UC Berkeley's CS10 Spring 2019 Midterm: Prof. Dan Garcia

WHEN YOL HEAR THIS:

What's that Smell? Oh, it's Potpourri! (2 pts each for 1-6, lowest score dropped)

Question 1: What was shared with you in the Testing + HW3 lecture? (select ONE)
O Unit testing is when you test all your code together (i.e., the top-level function), as one unit.
\bigcirc Black-box testing is when you test only the commands that have no inputs or outputs (just like a black box).
O Glass-box testing is when you only need one test to break the code (which is considered fragile, like glass).
○ Regression testing is when you pretend you've regressed to a younger age, and test with nonsense inputs.
O None of these

Question 2: What was shared with you in the Computing \& the Environment lecture? (select ONE)
O Even though 80% of E-waste is properly recycled, the other 20% is many millions of tons of waste!
\bigcirc Affected people in countries receiving e-waste have become dependent on it, even though it's killing them.
O The appetite for compact discs, with more and more people having disposable income (and access to Amazon and similar delivery services that can ship them to you so easily), hasn't stopped growing!
O Nobody has found any real uses for old cell phones, since their hardware/software is so outdated.
O None of these

Question 3: What was shared with you in the Computers in Education lecture? (select ONE)
O Judah Shwartz classifies the uses of computers in education into: \{ Individual, Collaborative, Computer-led \}.
\bigcirc xMOOCs are known for their highly collaborative structure, where folks are as much teachers as students.
O Sir Ken Robinson believes that education should be based on industrialism for efficiency and better learning.
\bigcirc Prof. Brian Harvey argued that standardized testing has changed what counts as knowledge in schools.
O None of these

Question 4: What was shared with you in the Concurrency lecture? (select ONE)
O Moore's law is the exponential growth in number of cores in CPUs (essentially doubling every 18 months!).
O In 2005, a sea change in computers happened, and we couldn't keep making parallel computers faster!
O The "sea change" to multi-core meant the computing community had to rethink its languages and algorithms.
○ Deadlock can happen with three or more "workers", but not with only one or two "workers".
O None of these

Question 5: If 5% of a program is serial, what's the max speedup we can get with ∞ cores? (select ONE)

\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$5 x$	$10 x$	$20 x$	$95 x$	None of these

Question 6: What is $1010_{2} \times 2_{10}$? (select ONE)

| \bigcirc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2020{ }_{20}$ | $2020{ }_{16}$ | $1010{ }_{16}$ | AO_{16} | 2416 | 22_{16} | 20_{16} | 1816 | 16_{16} | 14_{16} | 12_{16} |

You are given seven expressions:
a) P DATA
b) $P \quad P$ DATA
c) P keep items such that $\mathbf{P} \Gamma>$ from DATA
d) keep items such that \mathbf{P} Г from DATA
e)
keep items such that \mathbf{P} [from P DATA
f)

g)

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}
\mathbf{b}	\square					
\mathbf{c}	\square	\square				
\mathbf{d}	\square	\square	\square			
\mathbf{e}	\square	\square	\square	\square		
\mathbf{f}	\square	\square	\square	\square	\square	
\mathbf{g}	\square	\square	\square	\square	\square	\square

Which pairs are always equivalent for all DATA lists and all predicates $P \Gamma$? Said another way, which pairs will always report the same value? (select ALL that apply; selecting a particular box means you are declaring that the expression in the row will always have the same value as the expression in the column for all input. (there is at least ONE, so if you mark no boxes, we'll assume you skipped it and you'll receive no points)

Question 8: Match each programming paradigm with the description. (select ONE per row, 2 pts)

You're not allowed to have any side- effects! Works great with parallelism.	Declarative	Object-Oriented	Functional	Imperative
Classes are "factories" producing instances; inheritance saves code.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Programs are like a recipe: first do this, then that, and next that, etc.	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Tell the computer what you want, not how to do it. It works like "magic".	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Question 9: Chasing windmills... (6 pts, 1+1+1+1+2) SID: \qquad
move (B) steps
repeat C
move (D) steps

$$
\text { turn } C 360 / C \text { degrees }
$$

move $0-B$ steps

turn C 360/A degrees

a) The sprite starts at the origin at $(0,0)$. The upper right grid corner is the point $(3,3)$. The pen is down. As you might imagine, the pen thickness is very small and we zoomed in on the screen. What are the values of $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} for the Windmill block that yield the image on the right? (select ONE for each)
A: $\bigcirc 1$
○ $2 \bigcirc 3$
○ 4
O 5
O6
○ 7
O8
○ 9
○ 10
O None of these
B: ○ 1
○ 2
○ 3
○ 4
$\bigcirc 5$
O6
$\bigcirc 7$
○ 8
○ 9
○ 10
O None of these
C: ○ 1
○ 2
○ 3
○ 4
$\bigcirc 5$
O 6
$\bigcirc 7$
○ 8
○ 9
$\bigcirc 10$None of these
D: ○1
○ 2
○ 3
○ 4
$\bigcirc 5$
O6
○ 7○9
○ 10
O None of these

Windmill N some B N some D

b) What is the running time of Assume moving and turning take constant time. (select ONE)

	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Constant	Logarithmic	Linear	Quadratic	Cubic	Exponential

Question 10：どうもありがとうミスターロボットDōmo arigatō，Mr．Roboto．．．（10 pts，3＋5＋2）
Here are helper blocks for controlling a robot（shaped like an arrowhead）on a grid world，looking down on it．

move forward	rotate right
The robot moves one square forward in the direction it＇s facing．	The robot turns right，in－place． （That is，it makes a 90° right turn）

For both（a）and（b），we start with the robot in the middle of the grid，facing up，as shown above．

repeat pick random 1 to 4
 rotate right

move forward

a）In the grid above，shade in all the squares that the robot could end up in after a call to Meander 1
b）In the grid above，shade in all the squares that the robot could end up in after a call to
Meander 2
c）What is the running time of

\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Constant	Logarithmic	Linear	Quadratic	Cubic	Exponential

You author the following (possibly buggy) code because you want to check if \mathbf{A} is the same as \mathbf{B}, and \mathbf{A} is also the same as \mathbf{C}. That is, whether \mathbf{A} is equal to both \mathbf{B} and \mathbf{C}.

For the following cases, choose the appropriate values for \mathbf{A}, \mathbf{B} and \mathbf{C}. (There may be multiple right answers) (For each (a)-(d), select ONE per row, or select "This is impossible to achieve!" if it can't be done)
a) A) is equal to both (B) and C is supposed to return false, and does return false.

	true	false	This is impossible to achieve!
A	\bigcirc	\bigcirc	
B	\bigcirc	\bigcirc	
c	\bigcirc	\bigcirc	

b) (A) is equal to both (B) and C is supposed to return true, and does return true.

	true	false	This is impossible to achieve!
A	\bigcirc	\bigcirc	
B	\bigcirc	\bigcirc	
\mathbf{C}	\bigcirc	\bigcirc	

c)

	true	false	This is impossible to achieve!
\mathbf{A}	\bigcirc	\bigcirc	
\mathbf{B}	\bigcirc	\bigcirc	
\mathbf{C}	\bigcirc	\bigcirc	

d) A is equal to both B and C is supposed to return true, but returns false.

	true	false	This is impossible to achieve!
\mathbf{A}	\bigcirc	\bigcirc	
\mathbf{B}	\bigcirc	\bigcirc	
\mathbf{c}	\bigcirc	\bigcirc	

Question 12: Why isn't the word palindrome a palindrome? Awww! (12 pts)

Palindromes are words which read the same backward as forward, e.g., ОTTO, I and ANA. A better name for these words would be PalindromeALL, because ALL letters have to match backward and forward. We're interested in PalindromeANY words, in which ANY letters can match, e.g., оTTO, I, ANA, CAL (note the A in the middle matches both forwards and backwards) and REAR. You guessed it, STANFORD is not a PalindromeANY word, since no letters match forward and backwards. Fill in the 4 sets of "select ONE" options to write it.
Here are the two examples in case you're still not clear on this:
CAL (notice the \underline{A} is in the same place forwards and backwards?) LAC

STANFORD (notice no letters match forwards and backwards?) DROFNATS

+ first + and + last + letters + of + word $+e q u a l+>$
report letter $1 *$ of word $=$ letter length of word of word

