UC Berkeley's CS10 Spring 2018 Midterm 1: Instructor Dan Garcia

Name of person on left (or aisle)
Name of person on right (or aisle)
Fill in the correct circles \& squares completely...like this: (select ONE) (select ALL that apply)

Question 1: Match each testing strategy with properties that describe it. (select ONE per row) 2 pts

	Unit	Regression	Integration	Black-box	Glass-box
Test as if you wrote it yourself and know insides	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Test as if you have no idea what is inside	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Test when you're putting it all together	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Test your block in isolation according to spec	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Run series of old tests after adding new feature	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Question 2: If report (B)
reports true, what can you say about A and B? (select ALL that apply) 3pts

| \square |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A must be
 equal to B | A must be
 different from B | A must be
 false | A must be
 true | B must be
 false | B must be
 true | None of these |

...use this area for your scratch work, should you need it...

Question 3: Which one will say 20? The differences are only the say and final set blocks. (select ONE) 3pts

\bigcirc	\bigcirc	\bigcirc	\bigcirc
script variables my age	script variables my age	script variables my age	None of these
set my age ${ }^{\text {v }}$ to 19	set my age - to 19	set my age - to 19	
Have Birthday my age	Have Birthday my age	Have Birthday my age	
say my age	say age	say my age	
Have Birthday age	Have Birthday age	Have Birthday age	
set age to age + 1	set age to age + 1	$\text { set age to my age }+1$	

\qquad
Sometimes getting the most performance out of a parallel system is all about scheduling things to happen at the right time. Here's an example. A boy scout is supposed to walk four nice old ladies across a street. It takes the ladies 10, 20, 30, and $\mathbf{5 0}$ seconds (respectively) to cross the street. Whenever two or more people are walking together, they have to walk at the speed of the slowest person in the group. It takes the boy scout only 1 second to walk back on his own. For all the calculations below, stop the timer the instant all four ladies have crossed; don't count the time at the end it takes the boy scout to return back to his original side of the street.
a) His scoutmaster has told him he can walk at most one person at a time. What's the fastest possible time to walk all the ladies across the street? (select ONE)

O	-	-				-	\bigcirc	\bigcirc	-		-	\bigcirc	\bigcirc	O		O	\bigcirc	\bigcirc		-	,	O	O	O
41	42	43	44	51	52	53	54	61	62	63	64	71	72	73	74	81	82	83	84	111	112	113	114	115

.. use this area for your scratch work, should you need it..
b) His scoutmaster now tells him he can walk at most two people at a time, one on each arm. Remember, he needs to walk at the speed of the slowest person he's walking with.
What's the fastest possible time to walk the all the ladies across the street? (select ONE)

| \bigcirc |
| :---: |
| 41 | 42 | 43 | 44 | 51 | 52 | 53 | 54 | 61 | 62 | 63 | 64 | 71 | 72 | 73 | 74 | 81 | 82 | 83 | 84 | 111 | 112 | 113 | 114 | 115 |

.. use this area for your scratch work, should you need it..
c) What if instead there were two boy scouts who could each walk at most one person at a time. What's the fastest possible time to walk the all the ladies across the street? (select ONE)

| \bigcirc |
| :---: |
| 41 | 42 | 43 | 44 | 51 | 52 | 53 | 54 | 61 | 62 | 63 | 64 | 71 | 72 | 73 | 74 | 81 | 82 | 83 | 84 | 111 | 112 | 113 | 114 | 115 |

.. use this area for your scratch work, should you need it..
d) Assume the old ladies have very kind manners and whenever they think they know the age of someone, and that person is older than them, they tell the boy scout that they won't start crossing until the older person crosses first. The problem is that their memories aren't so crisp and their memory of who is older is a little shaky. What could this result in? (select ALL that apply)

Their preferences lead to the optimal crossing times	Their preferences lead to the slowest possible crossing times	Their preferences lead to it being impossible to get all of them across the street	Their preferences lead to it being impossible to get any of them across the street.

Question 5: Take my midterm (iteratively and recursively), please! (6 pts=3+3) SID: \qquad
Helper Block

Do one question
No questions left \rangle

Description

Given the two helper blocks above, show us how to take an exam, iteratively and recursively. Fill in the slot in the row and column corresponding to the block you'd like to place in the code (you might not need all rows and cols).

Do one question from the exam
Return true if there are no questions left on the exam:

Question 6: Dude, where's my card? (6 pts = 4+2)
You have cards, numbered 1-N, which are shuffled (their order is scrambled), and placed into a list.
a) Fill in the circles to complete the block whose job is to report the index of a particular card in a shuffle.

b) We change numbers from (1) to length of shuffile to shuffile. What would the block now do?

