## CS10 Fall 2018 Midterm 2 Answers

(The block on the right is used for Questions 10 & 11; 2 pts each)

**Question 10:** If the output from **Test** is false, which can you say for sure? **A** and **B** are Booleans. (select ALL that apply)

If **Test** is false, then both terms of the **or** must be false, since **or** is a "true finder" and returns true if *any* of its inputs are true. So we know A must be false. We also know that A=B is false, so that means  $A \neq B$ , and if A must be false, then B must be true!

|                | •                     | •                      |                        |               |  |
|----------------|-----------------------|------------------------|------------------------|---------------|--|
| A must be true | <b>B</b> must be true | <b>A</b> must be false | <b>B</b> must be false | None of these |  |

Question 11: Fill in the blanks so the predicate is the same as the original Test block. (select ONE from each)



So if **Test** only returns false when A is false and B is true, then it returns true all other cases. The initial "if not B" then case is only reached if B is false, which is when **Test** is supposed to return true (since it's not the A false B true case), so the first report should be true. In the else case, that's when B is true, but we know that if A is false it returns false (we learned from the last problem), and if A is true it's true, so we just return A.

| <b>Question 12:</b> What does <b>Mystery</b> report,<br>if B is a non-negative integer (i.e., 0, 1, 2,)? (select ONE, 4 pts)<br>A is incremented with the value B for B iterations, so the first time it's A+B,<br>then it's A+2B, then A+3B, until it's A+B*B = A+B <sup>2</sup> |     |     |                |                |                | Mystery A<br>repeat B<br>set A to | <b>B</b>         | B                |                            |             |       |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----------------|----------------|----------------|-----------------------------------|------------------|------------------|----------------------------|-------------|-------|---------------|
|                                                                                                                                                                                                                                                                                   | 0   | 0   | 0              | 0              | 0              | 0                                 | 0                | •                | 0                          | report A    | 0     | 0             |
|                                                                                                                                                                                                                                                                                   | A+B | A×B | A <sup>B</sup> | B <sup>A</sup> | B <sup>2</sup> | A+B <sup>B</sup>                  | A+B <sup>A</sup> | A+B <sup>2</sup> | The sum of all the numbers | from A to B | Error | Infinite Loop |

Question 13: What is 256<sub>10</sub> + 10000<sub>2</sub>? (select ONE, 2 pts) *Hint:* 16<sub>10</sub> × 16<sub>10</sub> = 256<sub>10</sub>

We're asked to convert these numbers to hexadecimal. Hexadecimal of  $256_{10}$  is  $100_{16}$ , since the columns of hex are  $16^3 = 4096_{10} | 16^2 = 256_{10} | 16^1 = 16_{10} | 16^0 = 1_{10}$ . The number  $10000_2$  is  $10_{16}$ , and 100 + 10 (in any base) is 110.

| 0                       | 0                | 0                |                          | 0                        | 0                        | 0                   | 0                   | 0                   | 0             |
|-------------------------|------------------|------------------|--------------------------|--------------------------|--------------------------|---------------------|---------------------|---------------------|---------------|
| <b>AF</b> <sub>16</sub> | FA <sub>16</sub> | FF <sub>16</sub> | <b>110</b> <sub>16</sub> | <b>111</b> <sub>16</sub> | <b>210</b> <sub>16</sub> | 10256 <sub>16</sub> | 12560 <sub>16</sub> | 22560 <sub>16</sub> | None of these |





d) What does the expression above return, taken straight from lecture with a different input? (Choose ONE) The combiner creates a frankenstein function, in which the list (f(x) g(x) h(x)) becomes f(g(h(x))). So this is reverse(stutter(duplicate(ucb)))  $\rightarrow$  reverse(stutter(ucbucb))  $\rightarrow$  reverse(ucbucb)  $\rightarrow$  bcubcuu.

| 0                                                                             | 0                                                                                                                                                                                                                                                   | 0                                                                                                                                  |                                                      | 0                                                                                           | 0                                               |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------|
| laclacc                                                                       | bcu uucb ucb ucb                                                                                                                                                                                                                                    | bcuubcuu                                                                                                                           | bcubcuu                                              | bbcubbcu                                                                                    | bbcubcu                                         |
| c) The de<br>canno<br>perforr<br>indepe<br>This oper<br>up with pa            | eveloper of Snap! removes the<br>t run at the same time, claimin<br>mance. What could now happe<br>endent of the block below. (Cho<br>ns the floodgates to all the con-<br>arallel and distributed computin                                         | e restriction that tw<br>g it will increase<br>en? Note: this prot<br>cose ALL that app<br>currency problems<br>ng, unfortunately, | o scripts<br>blem is<br>ly)<br>s that come<br>yikes! | <ul> <li>Abstra</li> <li>Deadlo</li> <li>Liveloo</li> <li>Race 0</li> <li>Turing</li> </ul> | ction<br>ock<br>ck<br>Condition<br>Completeness |
| e) In fact<br>with \$<br>simult<br>using<br><i>values</i><br>(choos<br>other, | t to show this, you set up a fak<br>100 in it, and have TWO peop<br>aneously take \$10 out of their<br>the block above. <i>What are the</i><br>s of <b>BALANCE</b> afterward?<br>se ALL that apply) If they run t<br>the first one would withdraw n | e bank<br>le<br>accounts<br><i>possible</i><br>his one after the<br>noney setting the <b>I</b>                                     | + withdraw<br>if BALANC<br>set BALANC                | + amount +<br>E > amount<br>E • to BALANCE<br>then the second we<br>there accurd both re-   | - amount                                        |

other, the first one would withdraw money setting the **BALANCE** to 90, then the second would run this and set the **BALANCE** to 80. If they happened to run at the same time, they could both read the value of **BALANCE** to be 100 at the same time, and both then set the **BALANCE** to 90. Hey, a free \$10!



g) In computational science, computers are used to understand things that are \_\_\_\_\_\_ for experiments: (choose ONE)

| Ò Í                | 0           | 0         | •        | 0                | 0          |
|--------------------|-------------|-----------|----------|------------------|------------|
| too data-intensive | too trivial | too cheap | too slow | too experimental | too random |

## Question 15: We put the fun in functional programming ... (10 pts)

We start with our standard square and add a fun flourish before we make our turn. The sprite starts at the top left of the biggest square facing right. Code and pictures.



might not need all rows).