CS10 Fall 2017 Midterm 2 Answers

Question 1a: If \square evaluates to true, what can you say about \mathbf{A} and \mathbf{B} ? not A or A is always true. true and B is just B. So if the expression is true, B must be true.
Question 1b: If \quad not A or A and B evaluates to false, what can you say about A and B ? not A or A is always true. true and B is just B. So if the expression is false, B must be false.

Question 2: A code segment will be used to swap (i.e., exchange) the values of the variables \mathbf{a} and \mathbf{b} using the temporary variable temp. Which of the following code segments correctly swaps the values of \mathbf{a} and \mathbf{b} ? (select ONE)

Question 3: Which are the possible values of global variable \mathbf{N} at the end of this program? (select all that apply). Left is the " +1 " script, Right is the "square" script.
Option 1: Left gets N, adds 1 , but the $N \leftarrow N+1$ set is delayed. Then Right gets the original N twice, sets it to N^{2} but that value is overridden by $\mathrm{N}+1$ when that set eventually runs. Answer: $\mathrm{N}+1=11$
Option 2: Right gets N twice, squares it, but the $N \leftarrow N * N$ set is delayed. Then Left gets the original N, sets it to $N+1$ but that value is overridden by $\mathrm{N}^{*} \mathrm{~N}$ when that set eventually runs. Answer: $\mathrm{N}^{*} \mathbf{N}=100$
Option 3: Left gets N, adds 1, sets $N \leftarrow N+1$. Then Right gets new $N+1$ twice, sets it to $(N+1)^{2}$. Answer: $(N+1)^{2}=121$
Option 4: Right gets N, squares it, sets $N \leftarrow N^{2}$. Then Left gets new N^{2}, sets it to $N^{2}+1$. Answer: $N^{2}+1=101$
Option 5: Right gets N once, the other Get is delayed. Left gets N, adds 1 , and executes $N \leftarrow N+1$. Then Right's second get retrieves the NEW value of N, so it has a N and $N+1$ and multiplies them together. Answer: $\mathbf{N}(\mathbf{N + 1})=110$

The number of ways of making change for 15 cents given coins(1051) is 6 , and our code returns 6.
If we swap the order of the coins to (1510), what would happen? It would report the same answer as before, the order of the coins doesn't matter in count change (thankfully!)
Question 4b: If we swapped the order of the two if-reports, when would it change our reported value? When both test cases would be true, then the order would matter, so it would be when the amount is zero AND coins are empty. (since the amount couldn't simultaneously be <0 and $=0$).
Question 4c: If we change the bottom-right expression coins to all-but-first-of(coins), What'd be computed?
It would report what'd happen if each coin could only be used once, since on that recursive call you're both using a coin (amount - item 1 of coin) and not using it again (coin becomes all but first of coin).
Question 4d: Normally if we asked for the change for 2 cents given only pennies, i.e., coins were (1), it would report 1, since there's only a single way of doing it (penny + penny). What would it report if we actually had two kinds of pennies? l.e., what'd happen if we called count change for 2 cents with (11)? report 3 (for $A A, A B, B B$ given pennies A, B)

