CS10 Fall 2016 Midterm 1 Answers

Question 1: What happened in 2005 that *caused computer chip manufacturers to "go parallel"*? "Computer chip power density started approaching that of a nuclear reactor and we couldn't cool them down."

Question 2: Consider the AI problem of *Natural Language Processing* of an audio track in which the user says the two words: "artificial <audio-garbled>". The three most common words the user could have wanted to say next are "intelligence", "limb" and "flavoring". The system chooses the one... with the highest PRODUCT of the n-gram probability and the audio proximity probability.

Question 3: Sir Ken Robinson, the famed British author and speaker argues...

□ we shouldn't be "anesthetizing" our students (with ADHD medicines), we should be "waking them up"! (YEP!)

u we've got to go in a completely separate direction from standardization and standardized curriculums. (YEP!)

□ we should be separating male students from female students so they can each focus better. (NOPE)

□ most great learning happens *individually*, which is the "stuff of growth". (NOPE, he said "it happens collaboratively") **Question 4:** What are examples of the principle: "Information about you on the internet will be used by somebody in their interest — including against you"...

□ Hackers stealing your personal information for identity theft. (YEP)

□ Hackers stealing your private information for extortion. (YEP)

□ Advertisers using your web browsing habits to show you online custom ads. (YEP)

□ Data brokers selling information about you to offline advertisers. (YEP)

Question 5: What is *Stuxnet*? A computer worm used to spin Iranian uranium enrichment centrifuges out of control. Question 6: Octal (base 8) is another base that computer professionals sometime use to represent numbers. How many different things can be represented by two octal characters, with each character 0-7? Each are independent, so it's 8*8=64 Question 7: Here are helper blocks for control and sensing of a robot, starting in the bottom center of the grid, facing up? Which letters are reached if we run the script? A,C ... go straight, turn left, turn left, and cycle on A and C forever.

Question 8: If we swap the cases for testing and going LEFT with the cases for testing and going RIGHT, how does the # of letters we reach change? Remains the same (since the maze is symmetric left-right).

and spinning it once it gets to the front yields: bears.

Question 10: Imagine a series of these blocks (possibly very many) composed together. If the *output* of this composed expression were "**treat**", which of the following could have been the *input*?

beats YES! Spin the b into a r, then "spin1st of right" to bring the s to the front as a t.

reatt NOPE! Can't get the **t** at the end to the front without spinning it past itself, you'll get **ureat**.

aaaaa NOPE! Surprisingly, can't get "**a**t" to be together, since you can only spin the front letter (to make it a t) but every time you try to get an **a** from the back to the front it becomes a **b**.

ataaa YES! The same problem in the previous problem is now solved, you just spin the three **as** to the front to be '**tre**'. **Question 11:** Wouldn't it be great if a predicate

existed to tell us whether a *particular* input **word** (say one of the four above), sent through an arbitrary composed expression of these two blocks could ever produce an output **goal** word? In some sense, we think of it as asking whether we can get from **word** to **goal**. Let's write it together!

