CS10 Fall 2016 Midterm 1 Answers

Question 1: What happened in 2005 that caused computer chip manufacturers to "go parallel"? "Computer chip power density started approaching that of a nuclear reactor and we couldn't cool them down."
Question 2: Consider the Al problem of Natural Language Processing of an audio track in which the user says the two words: "artificial <audio-garbled>". The three most common words the user could have wanted to say next are "intelligence", "limb" and "flavoring". The system chooses the one... with the highest PRODUCT of the n-gram probability and the audio proximity probability.
Question 3: Sir Ken Robinson, the famed British author and speaker argues...
\square we shouldn't be "anesthetizing" our students (with ADHD medicines), we should be "waking them up"! (YEP!)
\square we've got to go in a completely separate direction from standardization and standardized curriculums. (YEP!)
\square we should be separating male students from female students so they can each focus better. (NOPE)
\square most great learning happens individually, which is the "stuff of growth". (NOPE, he said "it happens collaboratively")
Question 4: What are examples of the principle: "Information about you on the internet will be used by somebody in their interest - including against you"...
\square Hackers stealing your personal information for identity theft. (YEP)
\square Hackers stealing your private information for extortion. (YEP)
\square Advertisers using your web browsing habits to show you online custom ads. (YEP)
\square Data brokers selling information about you to offline advertisers. (YEP)
Question 5: What is Stuxnet? A computer worm used to spin Iranian uranium enrichment centrifuges out of control.
Question 6: Octal (base 8) is another base that computer professionals sometime use to represent numbers. How many different things can be represented by two octal characters, with each character 0-7? Each are independent, so it's $8^{*} 8=64$ Question 7: Here are helper blocks for control and sensing of a robot, starting in the bottom center of the grid, facing up? Which letters are reached if we run the script? A, C ... go straight, turn left, turn left, and cycle on A and C forever.
Question 8: If we swap the cases for testing and going LEFT with the cases for testing and going RIGHT, how does the \# of letters we reach change? Remains the same (since the maze is symmetric left-right).

Question 9: What is spin1st of right spin1st darsa ? Well, spin1st darsa earsa so rotating the 'a' around and spinning it once it gets to the front yields: bears.
Question 10: Imagine a series of these blocks (possibly very many) composed together. If the output of this composed expression were "treat", which of the following could have been the input?
beats YES! Spin the \mathbf{b} into $\mathrm{a} \mathbf{r}$, then "spin1st of right" to bring the \mathbf{s} to the front as $\mathrm{a} t$.
reatt NOPE! Can't get the t at the end to the front without spinning it past itself, you'll get ureat.
aaaaa NOPE! Surprisingly, can't get "at" to be together, since you can only spin the front letter (to make it a t) but every time you try to get an a from the back to the front it becomes a b.
ataaa YES! The same problem in the previous problem is now solved, you just spin the three as to the front to be 'tre'.
Question 11: Wouldn't it be great if a predicate existed to tell us whether a particular input word (say one of the four above), sent through an arbitrary composed expression of these two blocks could ever produce an output goal word? In some sense, we think of it as asking whether we can get from word to goal. Let's write it together!

