
CS10 With-Computer Final (Fall 2018, Sec 1) 
There	are	three	questions,	two	Snap!	ones	and	a	Python	one.	Save	your	Snap!	code	into	a	Snap!	file,	and	
name	it	FinalYourfirstnameYourlastname.xml (e.g.,	FinalAlanTuring.xml).		For	the	
Python	question,	create	a	new	Python	file	and	name	it	FinalYourfirstnameYourlastname.py 
(e.g.,	FinalAlanTuring.py).		Submit	both	files	on	bCourses	under	the	“online”	final	assignment	for	
your	lab	section.	All	questions	are	independent,	and	each	worth	5. 

Snap!	Questions:	(use	this	starter	file:	https://bit.ly/2xFAABY)	
Palindrome	words	are	those	which	read	the	same	backward	as	forward,	e.g.,	OTTO,	I	and	ANA.	A	better	
name	for	these	would	be	PalindromeALL	words,	because	ALL	letters	have	to	match	backward	as	forward.	
We’re	interested	in	PalindromeANY	words,	in	which	ANY	letters	can	match,	e.g.,	OTTO,	I,	ANA,	CAL,	and	
REAR.	You	guessed	it,	STANFORD	is	not	a	PalindromeANY	word,	since	no	letters	match.	

	

a) Write	it	recursively.	You	may	not	use	any	iteration	(repeat,	repeat until,	for,	for each)	
or	higher-order	functions	in	this	solution.		
	

b) Write	without	using	recursion.	You	can	earn	+3	bonus	points	if	you	can	do	it	with	only	higher-
order	functions	(i.e.,	only	map,	keep and	combine	to	drive	the	iteration).	Here	are	three	helpers	
you	might	find	handy	(note	the	map	shown	below	is	in	addition	to	the	built-in	map).	

	
	

	
	
Python	Question:	
Write	a	function	that	find_GC	that	takes	in	two	dictionaries	(GP	capturing	grandparentsàparents,	and	
PC	capturing	parentsàchildren)	and	returns	a	new	dictionary	of	all	grandparentsàchildren	it	finds.	As	an	
example,	we	have	three	grandparents:	1,	2	and	3;	three	parents:	10,	11	and	12;	and	two	children:	100	and	
200	with	à	connections	as	shown	below.	Your	function	would	return	the	two	grandparentsàchildren:	
1à100	and	2à100.	By	the	way,	more	than	2	grandparents	can	à	to	the	same	parent;	similarly	for	
parentsàchildren	(sometimes	family	records	get	corrupted,	it’s	not	our	job	to	worry	about	that).	

Grand-	
parents					Parents									Children	

	

	

	

	

	

	

	

Dictionary	GP										Dictionary	PC	 	

1	

2	

10	

3	

11	

12	

100	

200	

>>> GP = {1:10, 2:10, 3:11} 
>>> PC = {10:100, 12:200} 
>>> find_GC(GP,PC) 
{1: 100, 2: 100} 

If	you	forget	any	commands,	remember	there’s	
help(type)and		dir(type),	as	in	help(dict)	or	
dir(str).	


