
 1

UC Berkeley’s CS10 Spring 2017 Final Exam : Prof. Dan Garcia
_________________________________ __________________________ ___________________________
Your Name (first last) SID Lab TA’s Name

____________________________________ _____________________________________
ç Name of person on left (or aisle) Name of person on right (or aisle) è

What’s that Smell? Oh, it’s Potpourri! (2 pts each for 1-6, low score dropped)

Fill in the correct circles & squares completely…like this: ● (select ONE) n (select ALL that apply)

Question 1: Free points for attending the alumni panel! What happened? (select ONE)

○ ○ ○ ○ ○ ○ ○
Panelist

came late
Panelist
left early

Standing
ovation at end

Given flowers at
the end

Said Dan’s
nickname

Said their
nicknames

They ate lunch
on stage

Question 2: Which of the following is true? (select ONE)
○ Moore’s Law says that processor performance doubles every 18-24 months
○ Moore’s Law ended in 2005
○ Most of the time in scientific computer code is spent doing arithmetic calculations
○ All of the above �
○ None of the above �

Question 3: Around 1990, what happened in the world of computing (from an HCI viewpoint)... (select ONE)
○ It began an era known as “Mainframe computing”.
○ It began an era known as “Ubiquitous computing”.
○ It began an era known as “Personal computing”.
○ We were not able to cool our chips, so they went parallel and added cores.
○ HCI’s focus changed to focus on Psychology, and the Cognitive Science of Individuals.
○ HCI’s focus changed to focus on Human Factors.
○ None of the Above.

Question 4: If today someone proved that P did not equal NP, that’d mean for the FIRST TIME… (select ONE)
○ We can now verify a randomly-generated subset sum problem solution in polynomial time.
○ We can now solve the subset sum problem approximately.
○ We can now solve the subset sum problem in polynomial time.
○ We can now solve the subset sum problem using a heuristic.
○ We can now write a program that could tell whether any other program would eventually halt on its input.
○ None of the above.

Question 5: Internet standards started moving to IPv6 (and away from IPv4) because… (select ONE)
○ IPv6 ran over fiber-optic cable, whereas IPv4 ran on copper cables.
○ IPv6 allows for wireless connectivity, whereas IPv4 only allowed wired capabilities.
○ IPv6 allowed for an end-to-end architecture, whereas IPv4 did not.
○ IPv6 used a hexadecimal instead of binary encoding.
○ None of the above.

Question 6: Recall the knapsack problem involves calculating the most money you can carry in a weight-limited
knapsack, given boxes of different values and weights (you may choose as many boxes of the same kind as
you wish). You are given a bag that holds 20lbs and three boxes: A=$15@15lbs, B=$5@6lbs, C=$6@7lbs.
How much better does the optimal solution do over the greedy solution? (select ONE)

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $10

 2

Question 7a-b: Magical Mystery Tour, step right this way… (6 = 2+4 pts) SID: ______________

Consider the following two blocks and setup code:

We’re now to going to zoom in on pixels affected by calls to Mystery; the sprite always starts facing right in the

lower left, and the pen is in the center of the sprite. The top two images are the pixels before and after a call to
Mystery with LEVELS set to 0. Note the Emit Line Eastward command fills in exactly length pixels:

0 through length-1. Your job is to shade in (completely!) all the pixels that will be colored in after calls to

Mystery with LEVELS set to 1 and 3; don’t worry about drawing the location of the sprite at the end.

(If you need scratch space for the LEVELS set to 3 case, use the “Before the call to Mystery” pixels below)

Before the call to Mystery with LEVELS set to 0

After the call to Mystery with LEVELS set to 0

After the call to Mystery with LEVELS set to 1

After the call to Mystery with LEVELS set to 3

Question 8: It’s a rat race (condition) out there… (5 pts)
reverse reverses the order of the digits, and right rotates the digits to the right

(the one furthest on the right moves over to the left). How many different, unique

values of NUMBER are there at the end? (select all that apply) Note: “set” blocks

run instantaneously and “atomically” (i.e., aren’t interrupted by any other script)

☐
123 124 125 132 133 142 213 214 231 232 312 313 321 322 412 421 423 424 431 432 433

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0
1
2
3
4

17 18 19 20 21 22 23 24 25 26 27 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0
1
2
3
4

17 18 19 20 21 22 23 24 25 26 27

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0
1
2
3
4

17 18 19 20 21 22 23 24 25 26 27 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0
1
2
3
4

17 18 19 20 21 22 23 24 25 26 27

 3

Question 9a-c: Berkeley Python Flying Circus… (8 = 2+2+4 pts) SID: _____________

We’ve always appreciated how easily Python handles functions as data. There’s no call, run or launch

block, you can just receive a function as a parameter and call it directly. This gives us an idea. You remember

when we talked in lecture about how combine should always work if you’re given an associative dyadic (two-

input) function, and how it paired its values up was below the abstraction line (i.e., you shouldn’t know about it)?

It could evaluate it any way it wants and the answer should still be the same. For example, if given + on a list of

5 elements A through E, it could return ((((A+B)+C)+D)+E) or ((A + ((B + C) + D)) + E) etc, and it will all work

because + is an associative dyadic function. Taking that to heart, we’ve rewritten combine (as mycombine)

below that finds a random adjacent pair of elements, calls its function f on them and puts the result back in line:

 (note randint below is inclusive of its endpoints like , so it might return 1,2, or 3)

def mycombine(f,data):
 L = data[:] ## make a copy of the input
 while len(L) > 1: ## until we’re done,i.e. list==[elt]
 index = random.randint(0,len(L)-2) ## pick a random index (not the end)
 L[index]=f(L[index],L[index+1]) ## replace element with call to f
 L.pop(index+1) ## delete the one to the right
 return L[0] ## return the list’s only element

a) What will mycombine(joinswap,[1,2,3])return if

randint always returns 0 (i.e., always picks the leftmost

index)? (select ONE)

○ ○ ○ ○ ○ ○ ○ ○
123 132 213 231 312 321 Error None of these

b) What will be mycombine(joinswap,[1,2,3]) return if randint always returns len(L)-2

(i.e., always picks the all-but-rightmost index)? (select ONE)

○ ○ ○ ○ ○ ○ ○ ○
123 132 213 231 312 321 Error None of these

c) What are all the return values of mycombine(minus,[4,3,2,1])?

(select all that apply)

☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Here's your CS10 nal
exam, class.
Good luck.

Here's the exam you
should have gotten...

That other one was for the
remedial class.

The only thing worse than
dreaming about your CS10 nal is
waking with the realization that

you're only half-done!

1. Create a fractal that models the
shape of the North American

continent.

2. Write a program to translate
English to any language spoken by

Mankind.

3. Write down all the moves in the
solution to TicTacToe played on a

1,000 x 1,000 board.

4. On the screen above you is the
Pixar movie "Up".

Using Snap!, create the sequel.

People, I'm sorry – I've handed out
the wrong test. If you could just pass

those back to me...

Actually, you'll
probably need

super-duper luck.

PHEW!

What's all
this stuff

from
Chapter

100?!

(with CS10 customizations)

def joinswap(x,y):
 return int(str(y)+str(x))

def minus(x,y):
 return x-y

 4

Question 10a-c: どうもありがとうミスターロボット Dōmo arigatō, Mr. Roboto… (9=3+3+3 pts)
When designing a maze, you have lots of options. You can make it easy or hard or
impossible to get to the goal square (here, shown in grey). If we look at the maze on
the right, there are three squares that haven’t been set yet: A, B and C. They could be

set as a wall n (which we’ll call) or empty slot ☐ (which we’ll call).

a) How many total mazes can we create?

(select ONE)

b) How many mazes are solvable?
(i.e., robot can get to the goal)

c) What expression is true for all the solvable mazes? (select ONE à)

Question 11: Will the largest SID person please stand up… (16 pts)
Consider the problem of trying to find out which student has the largest student
ID number (SID) in a class of N students, with N a power of two (2, 4, 8, 16, …).
Note that all SIDs are unique. There are four algorithms proposed:

Algorithm I: The students line up, sitting down. The first two students stand and compare their SIDs.

The student with the smaller SID sits back down, the other remains standing. The next student in line

stands up and this process repeats until there is only one student (with the largest SID) left standing.

Algorithm II: All students stand up, pair up, and simultaneously compare SIDs, and the smaller of each

pair sits down. Those still standing repeat the process, pairing up with another standing person, until

there is only one left standing; that student has the largest SID.

Algorithm III: All students are seated in a circle, facing inward. They write their SID on a sticky note and

put it on the back of their neck, number facing out. A random student stands up and walks around to

each person and compares his/her number with the number on the neck. If his/hers is larger than all

others, he/she declares him/herself as the largest. If they are not, they sit down and someone else (who

has not stood up before) stands up, and the process repeats until one person declares he/she is largest.

Algorithm IV: Same as Algorithm III but after a person goes around and isn’t the largest, rather than the

next person being someone who hasn’t stood up before, a random person (of the N total students) is

chosen again (and it could be someone who has gotten up before).

Fill in the table for the worst-case running time and the worst-case number of SID comparisons.
(Select ONE for each algorithm from the top group, and one for each from the bottom).

 Algorithm I Algorithm II Algorithm III Algorithm IV
Constant running time ○ ○ ○ ○

Logarithmic running time ○ ○ ○ ○

Linear running time ○ ○ ○ ○

Quadratic running time ○ ○ ○ ○

Exponential running time ○ ○ ○ ○

May never end, could go forever ○ ○ ○ ○

Constant number of SID comparisons ○ ○ ○ ○

Logarithmic number of SID comparisons ○ ○ ○ ○
Linear number of SID comparisons ○ ○ ○ ○

Quadratic number of SID comparisons ○ ○ ○ ○
Exponential number of SID comparisons ○ ○ ○ ○

Infinite number of SID comparisons ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○
1 2 3 4 5 6 7 8 9

○ ○ ○ ○ ○ ○ ○ ○ ○
1 2 3 4 5 6 7 8 9

○ (A and B) and C
○ (A or B) or C
○ (not A) or (not C)
○ (not A) and (not C)
○ A or C
○ A and C

A

C
B

 5

Question 12: You’re telling a GenFib… (21 pts)

Recall the Fibonacci series from lecture, which starts with TWO 1s and subsequently every number is the sum

of the previous TWO numbers: 1, 1, 2, 3, 5, 8, 13, etc. See how we’ve highlighted the word “TWO”? That TWO

was a hard-coded value, we know as budding computer scientists to strive for generalization. The Generalized

Fibonacci (Gen Fib) sequence starts with quantity ONES of 1 and subsequently every number is the sum of the

previous ONES numbers. The Generalized Fibonacci sequence with ONES = 2 is the original sequence above.

Gen Fib N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 …
ONES = 1 1 1 1 1 1 1 1 …

ONES = 2 1 1 2 3 5 8 13 …

ONES = 3 1 1 1 3 5 9 17 …

! ! ! ! ! ! ! ! "

Write Gen Fib iteratively.

Fill in the 3 choices below and A-G in the table (10 total circles).

 A B C D E F G

 ○ ○ ○ ○ ○ ○ ○

 ○ ○ ○ ○ ○ ○ ○

 ○ ○ ○ ○ ○ ○ ○

0 ○ ○ ○ ○ ○ ○ ○

1 ○ ○ ○ ○ ○ ○ ○

last ○ ○ ○ ○ ○ ○ ○

 ○ ○ ○ ○ ○ ○ ○

 ○ ○ ○ ○ ○ ○ ○

 ○ ○ ○ ○ ○ ○ ○

 ○ ○ ○ ○ ○ ○ ○

 ○ ○ ○ ○ ○ ○ ○

 ○ ○ ○ ○ ○ ○ ○

These two blocks may be helpful…

G

E

F

DC

A

=< >

B

+ –

Fun Fact: When the Great Pyramids

were being built in ancient Egypt,

they used logs as rollers under the

giant blocks of granite (instead of

trying to slide the massive rocks

along the ground)

 6

Question 13a-c: Oh you hurt your knee? What you need is a cold compress… (10 = 4+4+2pts)

The compress block works

perfectly to compress a word with
repeated letters into a sentence in
which every set of consecutive
letters is replaced by the letter and
the number in-a-row after it. Here
is a simple example:

…and here’s how we’d write it:

Here’s a musical example:

Now, we’re going to modify the code (always starting from the original working version) and see how things
change. Fill in the squares completely, just like in the examples, to show the return value of each expression.

a) Move outside the if (as the last block of the foreach)

b) Change to

c) Your friend suggests to compress the return even further, and instead of using join words to build up

the compressed word, use join (so there will be no spaces in the output). Thoughts? (Choose ONE)

○ Great! That’ll compress the return value even more and not affect the ability to uncompress it.
○ There’s a problem, since you can’t uniquely uncompress all numbers (a special kind of “word” with digits).
○ There’s a problem, since the working compress block above would then run in an infinite loop.

a

b

0

1

2

3

a

b

0

1

2

3

a

b

0

1

2

3

a

b

0

1

2

3

a

b

0

1

2

3

a

b

0

1

2

3

(for question a only)

