
Discussion 16: Conclusion, Final Review

Object-Oriented Programming
We want to write objects that simulate grading in CS10. Fill in the function definitions below to
complete our implementation!

import random

class Reader:

Every reader has a name and a list of assignment objects they need #
to grade. The list of assignments should start out empty.
def __init__(self, name):
 self.name = name
 self.grading_queue = []

def grade_assignment(self):
 # Assign a random score to the first item in the grading queue
 # and then remove that assignment from the queue

 score = random.randint(0, 10)
 if len(self.grading_queue) > 0:
 self.grading_queue[0].score = score
 self.grading_queue.pop(0)

class Assignment:
 # Every assignment has a student object, assignment title, and score.
 # The score should always start out as 0.
 def __init__(self, student, title):
 self.student = student
 self.title = title
 self.score = 0

class Student:
 # Every student has a name
 def __init__(self, name):
 self.name = name

 def submit(self, assignment, reader):

To submit an assignment, add the assignment object to the
reader’s grading queue
reader.grading_queue.append(assignment)

Recursion

1. Write a recursive function that takes in a number, n, and determines how many digits it has.
Hint: One way to figure out how many digits are in a number is to count how many times you
need to divide that number until you get a number less than 10.

def num_digits(n):
 if n < 10:
 return 1
 else:
 return 1 + num_digits(n / 10)

2. Write a function called value that takes in a (possibly nested) dictionary and a key in that

dictionary, and returns the value of that key.
>>> dict = {‘name’: ‘Pikachu’, ‘attack’: {‘move’: ‘Thunder Shock’,
‘damage’: 40}, ‘type’: ‘electric’}
>>> value(dict, ‘damage’)
40

def value(dict, key):
 if key in dict:
 return dict[key]
 for d in dict.values():
 if value(d, key) is not None:
 return value(d, key)

3. You need to buy exactly total pieces of candy, but the grocery stores around you only sell

candy in packs of x and y. Fill out the recursive function buy_candy to determine whether
you’ll be able to successfully buy your candy.
>>> buy_candy(100, 25, 40)
True #25(4) + 0(40) = 100
>>> buy_candy(33, 9, 12)
True #9(1) + 12(2) = 33
>>> buy_candy(10, 4, 8)
False

def buy_candy(total, x, y):
 if total == 0:
 return True
 elif total < 0:
 return False
 return buy_candy(total – x, x, y) or buy_candy(total – y, x, y)

