

Discussion 12: Procedures as Data

Lambda Functions
1. Write a lambda function called f that takes in a number and outputs that number squared.

f = lambda n: n ** 2

2. Now, use a list comprehension and your lambda function f to return a list the squares of all
numbers between 1-5, inclusive.

[f(n) for n in range(1, 6)]

Functions as Data
What would the Python interpreter display for the following lines of code? If you believe a line errors,
just write “Error.” Each subproblem is independent and does not depend on the other
subproblems.

>>> lst = [1, 2, [3, 4]]

>>> lst[2].pop()

>>> lst

[1, 2, [3]]

>>> [x * 2 for x in range(4) if x % 2 == 1]

[2, 6]

>>> "".join([word[0] for word in "Univ of Calif at Berkeley".split()

... if not(len(word) == 2)])

‘UCB’

>>> "".join([word[0] for word in "Univ of Calif at Berkeley"

... if not(len(word) == 2)])

‘Univ of Calif at Berkeley’

>>> f1 = lambda x: x + x
>>> f2 = lambda x: x > 9
>>> [f(10) for f in [f1, f2]]

[20, True]

>>> f = lambda x: lambda: x + x

>>> f(2)

<function lambda ... >

>>> y = 3

>>> f = lambda x: lambda: x + y

>>> f(2)()

5

>>> g = lambda y: x + y

>>> g(2)

Error (x is not defined)

2. Now, continue the exercise, instead assuming that each subproblem is a continuation of the
previous subproblems.

>>> def make_adder(x):

... def inner(y):

... return x + y

... return inner

>>> make_adder(5)

<function make_adder ... >

>>> make_adder(5)(6)

11

>>> functions = [lambda x: x, lambda x: x * x, lambda x: x * 3]

>>> functions[2](3)

9

>>> def returnMax():

... return max

... returnMax()

<built-in function max>

>>> returnMax()(2, 3)

3

>>> max = min

>>> max(5, 4)

4

>>> returnMax()

<built-in function min>

returnMax()(2, 3)

2

3. Write a function called functionList that takes in a list of functions, functions, and a number,
n, and returns a list of the results of calling each function on n.
>>> functionList([lambda x: x + x, lambda x: x * x], 4)

[8, 16]

3. Write a recursive function called recursiveSum that takes in a function func and a number n, and
returns the summed results of func applied from 1 to n.
>>> recursiveSum(lambda x: x * x, 3)

14 # 3*3 + 2*2 + 1*1

Tree Recursion in Python
1. The Fibonacci sequence is a sequence of numbers where each number is the sum of the previous
two. Here is the start of the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, …

In the space below, write the function fib(n) that returns the nth Fibonacci number in the sequence,
assuming the first one is n = 0.

What is the runtime of this function? exponential

2. We find ourselves at the bottom of a staircase with num_steps steps. We can either climb the
stairs one at a time or two at a time (or a mix of the two). Fill in the function below to return the
number of ways you can climb the staircase.

def climb_staircase(num_steps):

if num_steps == 0:

return 1

elif num_steps < 0:

return 0

else:

return climb_staircase(num_steps - 1) + climb_staircase(num_steps - 2)

3. Now, when we are climbing the staircase, we can take any from 1 to max_steps number of steps
at a time (not just 1 or 2). Fill in the blanks below to write rewrite climb_staircase to return the
number of ways you can now climb the staircase.

def climb_staircase(num_steps):

if num_steps == 0:

return 1

elif num_steps < 0:

return 0

Else:

return sum([climb_staircase(num_steps - i, max_steps) for i in

range(1, max_steps + 1)])

