
Discussion 9A: Midterm Review

Algorithmic Complexity

1. Consider the problem of trying to find out which student has the largest student ID number

(SID) in a class of N students, with N a power of two (2, 4, 8, 16, ...). Note that all SIDs are

unique. There are four algorithms proposed:

• Algorithm 1: The students line up, sitting down. The first two students stand and

compare their SIDs. The student with the smaller SID sits back down, the other

remains standing. The next student in line stands up and this process repeats until

there is only one student (with the largest SID) left standing.

• Algorithm 2: All students stand up, pair up, and simultaneously compare SIDs, and

the smaller of each pair sits down. Those still standing repeat the process, pairing up

with another standing person, until there is only one left standing; that student has

the largest SID.

• Algorithm 3: All students are seated in a circle, facing inward. They write their SID

on a sticky note and put it on the back of their neck, number facing out. A random

student stands up and walks around to each person and compares their number with

the number on the neck. If theirs is larger than all others, they declare themselves as

the largest. If they are not, they sit down and someone who has not stood up before

stands up, and the process repeats until one person declares they are largest.

• Algorithm 4: Same as Algorithm III but after a person goes around and isn’t the

largest, rather than the next person being someone who hasn’t stood up before, a

random person (of the N total students) is chosen again (and it could be someone

who has gotten up before).

Fill in the table for the worst-case running time and the worst-case number of SID

comparisons. (Select ONE for each algorithm from the top group, and one for each from the

bottom).

R1time is constant; Runtime is linear; Runntime is Quadratic; Runntime is
exponential.

What is the runtime of the following block?

Runtime: So this question is actually missing important information that should’ve been
included initially. Assume that the items of the list are numbers bounded by some constant
value, meaning they can be no larger than this given value. With this information, the runtime
of the block should be linear.

As a function of input2, what is the runtime of the next block?

Runtime: Logarithmic

And finally, what is the runtime of the last block?

Runtime: Quadratic

Cipher Deciphering Cipher Decipherer

Your job is to write the block decipher text, which takes in two inputs: a line of text text, and a
list of lists cipherkeys.

The text is what needs to be converted, and the list of lists contains pairs of codeword, real
word pairs, like so:

Here, the list is stating that the word noodle should be converted to snake, cowbear to panda,
etc. For example:

Using only higher-order functions, and optionally, a helper function that also utilizes HoFs,
write out the code necessary for us to convert the text.

Decipher text(text, cipherkeys):

Decipher text helper (any inputs you want):

Closest Guess!

For this question, you have to fill out the closest guess block which takes in a number secret
number, and a list of numbers guesses. The idea is that you want to report the number in the
list of guesses that’s the closest to the secret number.

For example:

Similar to the previous question, you may only use higher-order functions, but you’re free to
build a helper block however you want.

Closest guess(number, guesses):

Helper(any input you want):

??? (challenge question)

Using combine and a helper block, return a copy of a given list.

Solution:

