Discussion 9A: Midterm Review

Algorithmic Complexity

1. Consider the problem of trying to find out which student has the largest student ID number
(SID) in a class of N students, with N a power of two (2, 4, 8, 16, ...). Note that all SIDs are
unique. There are four algorithms proposed:

Algorithm 1: The students line up, sitting down. The first two students stand and
compare their SIDs. The student with the smaller SID sits back down, the other
remains standing. The next student in line stands up and this process repeats until
there is only one student (with the largest SID) left standing.

Algorithm 2: All students stand up, pair up, and simultaneously compare SIDs, and
the smaller of each pair sits down. Those still standing repeat the process, pairing up
with another standing person, until there is only one left standing; that student has
the largest SID.

Algorithm 3: All students are seated in a circle, facing inward. They write their SID
on a sticky note and put it on the back of their neck, number facing out. A random
student stands up and walks around to each person and compares their number with
the number on the neck. If theirs is larger than all others, they declare themselves as
the largest. If they are not, they sit down and someone who has not stood up before
stands up, and the process repeats until one person declares they are largest.
Algorithm 4: Same as Algorithm Il but after a person goes around and isn’t the
largest, rather than the next person being someone who hasn’t stood up before, a
random person (of the N total students) is chosen again (and it could be someone
who has gotten up before).

Fill in the table for the worst-case running time and the worst-case number of SID
comparisons. (Select ONE for each algorithm from the top group, and one for each from the
bottom).

Algorithm | | Algorithm Il | Algorithm Ill | Algorithm IV
Constant running time

Logarithmic running time

Linear running time

Quadratic running time

Exponential running time

Constant number of SID comparisons

May never end, could go forever

Logarithmic number of SID comparisons

Linear number of SID comparisons

Quadratic number of SID comparisons

Exponential number of SID comparisons

Infinite number of SID comparisons

ollelle) Jejle] [ejeje) Jele

ejlejlef JleoJle] (ejellelle) Je)

O|0|@ 00 OmmO|O®0O 0|0

LJlellejlelle)le] [Jlele)ele]e

R1time is constant; Runtime is linear; Runntime is Quadratic; Run"time is
exponential.

What is the runtime of the following block?

| the following block [input

script variables -"-'-important variable

for each ((item in (input

report { important variable

Runtime: So this question is actually missing important information that should’ve been
included initially. Assume that the items of the list are numbers bounded by some constant
value, meaning they can be no larger than this given value. With this information, the runtime
of the block should be linear.

As a function of input2, what is the runtime of the next block?

| the next block [inputl [input2

if < (input2 = 1]

(inputl + | the next block (inputl | fioor | of {{ input2 VAER

Runtime: Logarithmic

And finally, what is the runtime of the last block?

the last block ! input

@ - 417 numbers from & to (input | in front of

the last block input — @B

Runtime: Quadratic

Cipher Deciphering Cipher Decipherer

Your job is to write the block decipher text, which takes in two inputs: a line of text text, and a
list of lists cipherkeys.

decipher text: Jlll cipherkeys: H

The text is what needs to be converted, and the list of lists contains pairs of codeword, real
word pairs, like so:

3 A B

1 noodle snake
2 cowbear panda
3

cookie book A
list Q10 'snake list list book T ;

Here, the list is stating that the word noodle should be converted to snake, cowbear to panda,
etc. For example:

B T 53 E Thenoodletook-thescookiesfromethescowbear | Gl [+ =1 E1TEH wThe snake took the book from the panda)
[list snake 4 p AL list list Ibook >

Using only higher-order functions, and optionally, a helper function that also utilizes HoFs,
write out the code necessary for us to convert the text.

Decipher text(text, cipherkeys):

f decipher | text: = cipherkeys: "keys :

report

‘map over
Csplit (text by [ZChd

using | (join [l & N

combine

Decipher text helper (any inputs you want):

ciphertext helper word: word | cipherkeys [keys :

script variables | cipherkey

set cipherkey | to

item EE5 of| CL B jtem @B of B 1= Cword SRR W keys

B

if © (cipherkey = [

report item @& of (cipherkey

Closest Guess!

For this question, you have to fill out the closest guess block which takes in a number secret
number, and a list of numbers guesses. The idea is that you want to report the number in the
list of guesses that’s the closest to the secret number.

For example:

10
closest guess number: guesses: list [] [) V’-)

Similar to the previous question, you may only use higher-order functions, but you're free to
build a helper block however you want.

Closest guess(number, guesses):

| " closest 'guess number: [secret number | qguesses: ' guesses :

report

combine (guesses’ using MCUES A [T L g secret number B)

Helper(any input you want):

' _closest guess_ . helper ¢ number -"_g;uessi -"iguessz

- | |abs | of number — -guessz

??7? (challenge question)

Using combine and a helper block, return a copy of a given list.

e list [1 (2 [3 4 using wif [1)

Solution:

|
if is(xX alist |?

add (¥ to (x

