
UC Berkeley’s CS10 Fall 2019 Midterm Answers
Question 1: What was shared with you in the Testing + HW3 lecture? (select ONE)
○ You should try to use mutable data whenever possible, since it makes testing easier.
FALSE! This was one of the points of the lecture, that mutable data structures make testing difficult, since each
run of the code mutates your data structures, and you always have to reset them to the initial state before re-
running the tests. Also, if your code crashes halfway through for some reason, it isn’t always easy to reset them.
● You should try to use immutable data whenever possible, since it makes testing easier.
TRUE! Since the data is immutable, you can just use our testing block, with no worry about “resetting” your data
structures.
○ Putting all your code in one monolithic, top-level script is a good thing, since it makes testing easier.
FALSE! If it works, great, but if there’s a problem where is it? You want to use abstraction and functional
decomposition to break your problem down into smaller sub-problems which themselves can be tested.
○ You can prove that a block with state and finite inputs is correct by testing it on all the possible inputs.
FALSE! The finite inputs helps a lot, but the state makes it impossible to prove that it’ll always work. The state
elements (say, global variables) may play nice when you’re testing it, but who knows what their value will be in
the future?

Question 2: What was shared with you in the Computing & the Environment lecture? (select ONE)
○ E-waste is worth $62.5 billion/yr, so first-world nations are competing to receive and process it.
FALSE! The e-waste is produced by first-world nations, but almost universally exported to third-world nations.
○ Thanks to streaming services (e.g., Netflix and Spotify) overall global e-waste emissions is decreasing.
FALSE! This one was tricky – while streaming services HAVE contributed to reduced e-waste (since there’s no
need for CDs and DVDs much anymore), overall global e-waste continues to grow as developing countries get
richer and start purchasing e-devices (then throwing them away) at an increased pace.
○ Researchers are using old cell phones for bio-acoustic monitoring of the ocean, to hear whales.
FALSE! They were using it for bio-acoustic monitoring of the forest, not the ocean.
● Researchers are using old cell phones as a low-power, low-cost distributed computing cluster.
TRUE! This was directly from a slide in lecture.

Question 3: What was shared with you in the Computers in Education lecture? (select ONE)
○ Using Judah Schwartz’ definitions, Snap! would be a Microworld.
FALSE! Snap! is would be classified as a Tool.
○ cMOOCs are “classroom-style” MOOCs, where lectures from the world’s best lecturers are emphasized.
FALSE! The “c” in cMOOC stands for “connectivist”, where lectures are de-emphasized, and learning from your
peers is paramount.
○ Prof Harvey: “The most important use of computers in education is web search to access information.”
FALSE! He believed it was “iclicker-like technologies”, since the multiple-choice “i-clicker” standardized testing
has changed what passes for knowledge.
○ Sir Ken Robinson believes that we should have more standardized testing, since that brings more efficiency.
FALSE! Much of the video had him railing against standardized testing, and standardization, saying we should
go “a whole other way”
● None of these

Question 4: What was shared with you in the Concurrency lecture? (select ONE)
○ Amdahl’s law predicted the number of transistors on a chip would double every two years.
FALSE! That’s Moore’s law.
○ Moore’s law said that the maximum speedup is a function of the percent of serial code you have.
FALSE! That’s Amdahl’s law.
○ Time sharing is a technique to allow multiple CPUs to share the work for a same task (a single thread).
FALSE! Time sharing allows a single CPU to mask as multiple CPUs by giving small rotating slices of time to
each thread.
○ If four self-driving cars arrive at a four-way stop simultaneously, and nobody moves, that’s a race condition.
FALSE! That would be deadlock.
● None of these

Question 5: If the max speedup with ∞ cores is 5x, what percentage of the code is serial? (select ONE)
Max speedup with ∞ cores is 1/SerialFraction, so 5 = 1/s à s = 1/5 = 20%

Question 6: What is 1216 ÷ 112? (select ONE)
1216 = 1 * 161 + 2 * 160 = 1 * 16 + 2 * 1 = 18
112 = 1 * 21 + 1 * 20 = 1 * 2 + 1 * 1 = 3
18 ÷ 3 = 6

Question 7: Two keeps are better than one! (…or are they? Bwahaha...)

You are given the following predicate and list .
What do the following expressions return?

map returns a new list in which every element of the
input has had P applied to it. P is a function that
ignores its input and reports true. So we get (true
true).

keep returns a new list in which every element of the
input is checked against P, and if P returns true, then
the element is kept, otherwise it’s not kept. Since P
always returns true, all elements are kept.

Here each element is passed through P twice. The
innermost P ignores the word, and always returns
true which is passed through the second P which
ignores the input (true) and always returns true. Thus
they’re all kept.

Snap! always evaluates expressions inside out, so
the first things that’s called is P(data) which returns
true. That is passed to keep, which is expecting its
second argument to be a list, and when it’s not, it
gives the error shown.

This is two applications of keep. We saw (from the
second row in this table) that keep<P()>from(DATA)
returns DATA, so this is just DATA passing twice
through the filter that isn’t really a filter at all since it
lets every list pass through untouched!

Question 8: Match each programming paradigm with the description. There should be only one per row and
one per column, so if some rows match more than one column, adjust it so they all work.

Declarative – this was exactly the the example we showed in class.
It’s also functional (since it a call to a function), but the function
definition below is better.

Functional – Here we’re defining a simple f(x)=2(x+1) function.

Imperative/Sequential – Do this(set B) then that (set C), with
mutation.

Object-Oriented Programming (OOP), since one sprite is both
sending a message to ALL sprites (through broadcast), as well as
sending a message to a particular sprite to run its “Do a dance”
method (here a command).

You author the following (possibly buggy) code because you
want to return true when A, B, and C are not all the same. That
is, return false only when A, B, and C are all true or all false.

For the following cases, choose the appropriate values for A, B
and C. (There may be multiple right answers)
(For each (a)-(d), select ONE per row, or select “Impossible to achieve!” if it can’t be done)

e) is supposed to return false, and does return false.

f) is supposed to return true, and does return true.

g) is supposed to return false, but returns true.

h) is supposed to return true, but returns false.

Question 10: Folks, please line up by SID, smallest to largest… (12 pts, 3*2+6*1 pt each)

Students are asked to stand and line up by student IDs (SIDs), smallest in the front and largest in the back.
Here are 3 algorithms to find out if they are or not. For all problems, assume the number of students (N) is a
power of 2 minus 1 (e.g., 21-1=1, 22-1=3, 23-1=7, 24-1=15, 25-1=31, …) and really big. (How big?) Really big.
Also, “clock time” is actual elapsed time if you used a stopwatch to time the algorithm, and SIDs are unique.

Algorithm I – “Everyone” algorithm
6. All at once, everyone (but the person in the back) writes their SID on a piece of paper, puts it in their left

hand and hands it to the person behind them over their right shoulder.
7. Everyone (but the person in the front) takes the paper being handed to them in their right hand.
8. The first person sits down.
9. If anyone notices the given SID is more than theirs, they yell “NOT IN ORDER”, otherwise they sit down.
10. If the person in back sees everyone sitting (including themselves), they yell “IN ORDER”

Algorithm II – “Divide and Conquer” algorithm
5. You walk to the middle student of the consecutive standing students, and make sure their number is

greater than the SID of the person directly in front of them and less than the SID of the person directly
behind them (whether standing or seated), skipping the comparison if there is nobody there.

6. If any of these are out of order (front bigger than back), you yell “NOT IN ORDER” and stop.
7. Otherwise, have that student sit down. If there are no remaining standing students, yell “IN ORDER”!
8. Otherwise, go to the consecutive group of standing students in front of the one seated, and ask a friend –

you have an infinite amount of non-student friends – to replicate what you’re doing for a similar
consecutive group of standing students behind the one just seated, and both of you go to step 1.

Algorithm III – “Random” algorithm
11. If no students are standing, you yell “IN ORDER” and stop.
12. You choose a random student from those who are standing.
13. You make sure that SID is bigger than the SID of the person directly in front (whether standing or

seated) and less than the SID of the person directly behind them (whether standing or seated), skipping
the comparison if there is nobody there.

14. If any of these are out of order (front bigger than back), you yell “NOT IN ORDER” and stop.
15. Otherwise, you ask that student to sit down and go to step 1.

a) Is each correct (i.e., always return the correct value, not error or run forever)? (select ONE per row)
Algorithm Yes No Rationale

Everyone ● ○ All of these algorithms work because they check everyone (eventually). “Everyone”
has all the people working in parallel with all but the person in the front doing the
check for them and their front neighbor, “Divide and Conquer” works to split and
split and split (etc) to check everyone with their person in front and back, and
“Random” randomly takes a student from the set of standing students until nobody
is standing. Often random algorithms aren’t guaranteed to work, but this one does
since it eventually moves everyone from the set of standing folks to the set of sitting
folks.

Divide and
Conquer ● ○

Random ● ○

b) In the WORST case, what’s the number of comparisons (NOT running time)? If it’s actually between two
categories, pick the bigger category. E.g., N4 is bigger than cubic, so pick exponential. (select ONE per row)

Algorithm Linear Rationale
Everyone ● Every algorithm has every person do either one check with the person

in front (“Everyone”) or two checks, one for the person in front and one
for the person in back (“Divide and Conquer” and “Random”). So that’s
either 1*N or 2*N comparisons total, which are all linear.

Divide and Conquer ●
Random ●

c) How much clock time (NOT running time) would each take in the WORST case? (select ONE per row)

Algorithm Constant Logarithmic Linear Rationale

Everyone ● ○ ○ The algorithm works in exactly 4 steps,
because step 3 has everyone working
at the same time.

Divide and Conquer ○ ● ○

The algorithm works in log2(n+1) clock
time because it works in a divide-and-
conquer way with 1 comparison in the
first iteration, 2 comparisons (in
parallel) in the second iteration, 4
comparisons (in parallel) in the third,
etc. 31 people takes log2(32) = 5
iterations, as demonstrated below
0000000000000001000000000000000
0000000100000001000000010000000
0001000100010001000100010001000
0101010101010101010101010101010
1111111111111111111111111111111

Random ○ ○ ●
The algorithm works in (worst case) N
steps, since every iteration asks one
person to compare with their
neighbors and sit down, and nothing is
happening in parallel.

Question 11: どうもありがとうミスターロボット Dōmo arigatō, Mr. Roboto… (16 pts, 2+2+2+10)

(Clarification: if the sprite were at (0,0) and moved 2 steps up, it would be at (0,2) and all pixels along the line
from (0,0) through (0,2) would be shaded; 3 pixels in total.)

 (a)

(b)

(c)

For (a), (b), (c), and (d) we
start with the pen down,

the sprite in the middle of
the grid, facing up, as

shown. Your job is to shade
in (completely!) all the

pixels that will be colored in

after .

…and here is how we would
have written each if we

were texting our friend our
code (note the indenting):

Fun(N)
for i = 1 to N
--> move 1 steps
turn right 90

Fun(N)
for i = 1 to N
--> turn right 90
move N steps

Fun(N)
for i = 1 to N
--> move i steps
--> turn right 90

-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4

-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4

-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4

1
2

3

d) Well, all of those were pitiful attempts at writing code that would have the sprite spiral outward perfectly, like
the picture below. If N were big enough, Fun(N)would eventually shade every pixel.
Write the code for Fun(N)that does this in the lines below, using the “text your friend” style we show above.
Make sure to use arrows to indent the inside part of any for loop you use. You might not need all the lines.

Fun(N)
for i = 1 to N
--> move i steps
--> turn right 90
--> move i steps
--> turn right 90

-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

