
UC Berkeley’s CS10 Fall 2019 Final Exam Answers: Prof. Dan Garcia

_________________________________ __________________________ ___________________________
Your Name (first last) SID Lab TA’s Name

____________________________________ ____________________________________
ç Name of person on left (or aisle) Name of person on right (or aisle) è

Fill in the correct circles & squares completely…like this: ● (select ONE) n (select ALL that apply)

What’s that Smell? Oh, it’s Potpourri! (2 pts each for 1-6, low score dropped)

Question 1: Which of the following was in the Human-Computer Interaction lecture? (select ONE)
○ Cars have crashed because of poor interfaces – the driver thought a display was in one mode (but it wasn’t)!
Nope, it was a plane that was mentioned having a dial that was read by the pilot as in the wrong mode
○ The fridge/freezer cooling control interface was an example of good design: two independent, intuitive knobs.
Nope, it was an example of terrible design, the diagram implies they were two separate dials but in fact they’re
not!
○ The iPhone was one of the rare devices that didn’t require a prototype, a testament to Steve Jobs’ genius!
Nope, they even showed a picture of the iPhone prototype (a combination of computer, phone, speakers, …)!
○ User interface code is typically 75% of all the code in “real” programs.
Nope, it is 50%
● None of these

Question 2: Which of the following was in the Saving the World with Computing lecture? (select ONE)
○ The best data structure to model the earth is using lat/long lines so we get skinny triangles near the poles.
Nope, just the opposite – skinny triangles don’t do well with numerical simulations (equilateral ones do)
○ Faster computers don’t give us any more resolution of our hurricane models, they just render them faster.
Nope, they actually DO allow for us to process higher-resolution simulations (as well as rendering them faster),
and we showed a difference between a low-resolution and high-resolution in class
● Scientists are using Machine Learning detection (like finding a cat in an image) with hurricane simulations.
Yep, these allow our scientists to automatically detect hurricanes in the simulations
○ We use abstraction in CS10, but scientists don’t with the Community Climate Code, since details matter!
Nope, they certainly use abstraction – each developer works on their own module and doesn’t need to know
how the others are written, only how they plug into the module they’re working on
○ None of these

Question 3: Which of the following was in the Limits of Computing lecture? (select ONE)
○ To say a problem is “in NP” means that you can randomly guess a solution, and verify it in linear time.
Nope, we verify in polynomial time
○ Finding a polynomial-time solution to just one NP-Complete problem means P ≠ NP!
Nope, it would imply P = NP
○ A program exists that can tell if another program, run on some input, will eventually stop.
Nope, that’s called the halting problem, and we proved in class why it was impossible to write
○ The greedy approach to solving the “knapsack problem” will always produce the optimal answer, as we saw.
Nope, we saw a case when greedy wasn’t optimal (100kg knapsack, Gold: 51 kg @ $52, Silver: 50 kg @ $50);
the greedy case takes only one gold and gets $52, but the optimal case is two silver to get $100.
● None of these

Question 4: Which of the following was in the Artificial Intelligence (AI) lecture? (select ONE)
○ It’s easier for a robot to open a door than to win a game of chess.
Nope, we saw exactly the opposite – a video of many robots failing to open a door.
○ Simulated Neural Networks used to be all the rage, but limited results meant the field has abandoned it.
Nope, neural networks are ALL the rage now.
● AI systems are now able to generate (not just recognize) images that never existed before.
Yep, in fact we showed an image of a person generated from other images.
○ One of the benefits of using AI systems in law enforcement is that they don’t contain racial/gender biases.
Nope, AI systems are as biased as the data used to train them, and unfortunately the data contains biases.
○ None of these.

Question 5: Who was one of the participants of the Alumni Panel? (select ONE)

○ A professional game developer at Electronic Arts who advised to take CS classes outside of the CS dept.
○ A professional software engineer at Pixar who advised you not to avoid challenge.
○ A professional backend engineer at Apple who advised you to delete your social media.
○ A professional full stack engineer at Pandora who advised taking personal finance courses.
● None of these
None of the participants were professional engineers/developers; we had two Cal students and a Cal lecturer.

Question 6: What is B10 ´ (B10 + 110) represented in base B? (select ONE)
○ ○ ○ ○ ● ○ ○ ○ ○ ○ ○ ○ ○
1B 10B 11B 100B 110B 2B 20B 21B 22B 12B BB B1B BBB

In base B, B is represented as 10B, and 110 = 1B.
Math works the same in any base, so we get 10B ´ (10B + 1B) = 10B ´ 11B = 110B.
We can double-check this works in binary: 210 ´ (210 + 110) = 210´310 = 610 = 1102 (and it checks out, yay)

Question 7: Magical Mystery Block, Step Right This Way! (8 pts=2+2+1+1+2) SID: ___________

a) What does return?
If it is an error, write “error”. If it never returns, write “loops”.

If we trace it, it’s

mystery(1, CAL)
join(1, mystery(0, join(CAL,1)))
join(1, mystery(0, CAL1))
join(1, CAL1)
1CAL1

b) What does return?
If it is an error, write “error”. If it never returns, write “loops”.

If we trace it, it’s

join(2, mystery(1, join(CAL,2)))
join(2, mystery(1, CAL2))
join(2, join(1, mystery(0, join(CAL2,1))))
join(2, join(1, mystery(0, CAL21)))
join(2, join(1, CAL21))
join(2, 1CAL21)
21CAL21

c) What are the first and last five characters of the return value

of ?
If it is an error, write “error”. If it never returns, write “loops”.

If we extrapolate, it’ll be all the numbers counting down in order in front of CAL and in back of CAL, no spaces.

800799798 … 987654321CAL800799798 … 987654321

d) Give one value for the first argument of that will cause
it never to return (even if we waited a very, very long time)? If that is impossible,
write IMPOSSIBLE. Our base case only checks for = 0, so if we give it any
negative number it’ll run forever, with more and more negative numbers.

1CAL1

21CAL21

8

0 0 7 9 … 5 4 3 2 1

-1

Question 8: Box within a box within a box… (8 pts) SID: ______________

N = 1 N = 2 N = 3 N = 4

In “text your friend”
format, this would be:

repeat(4)
--> move(256)steps
--> turn right(90)

In “text your friend”
format, this would be:

repeat(4)
--> repeat(4)
--> --> move(64)steps
--> --> turn right(90)
--> move(256)steps
--> turn right(90)

Hopefully you see what
the “text your friend”
pattern would be…

You load a Snap! file that has these four code snippets, and realize these are all the same pattern!

Write box, a single recursive program that does the same thing, and if called as shown above would generate
the same drawings. Use the “text your friend” style we show above for N=1,2. Our if statement has no else,
since here our base case is to do nothing (so we decided to remove it entirely). This is a little easier, actually,
because you can just focus on the recursive case…

box(steps, N)

----> if N ≥ 1

----> ----> repeat(4)

----> ----> ----> box(steps/4, N-1)

----> ----> ----> move(steps)steps

----> ----> ----> turn right(90)
	

Question 9: I should have made a left turn at Albequerque… (8 pts) SID: ______________

.

.

a) How many different images can be drawn when we click the green flag?

You can use the area above as scratch space. Three quick details:
• The sprite starts in the center of the stage facing down.
• Each individual block is atomic, which means it can’t be interrupted mid-way.
• The order Snap! chooses when there are multiple “when I receive” recipients is random.

○ ○ ○ ○ ○ ○ ● ○ ○
0 1 2 3 4 5 6 7 8

b) What is the name we give to this kind of problem?

Race condition

(-200, 200) (200, 200)

(-200, -200) (200, -200)

Question 10: Penn and Teller would be proud… (5 pts) SID: ______________

You hold a deck of cards in your hands (facing
up) and repeat the following steps, until you
have no cards left:

1) put the top card (from the deck in your
hand) on the table

2) put the top card (from the deck in your
hand) on the bottom of the deck
(no change if it’s only one card).

For example, if the cards were (top-to-bottom)
A B C D, the table shows what would happen…

If we have cards numbered 1-10, what should the initial order of them be (here listed top-to-bottom) so that the
cards on the table end up in order (1-10)? We’ve done the first two for you. Hint: it’s NOT 1,6,2,7,3,8,4,9,5,10

1

6

2

10

3

7

4

9

5

8

One way to do this is to label the cards ABCDEFGHIJ and lay them out

Cards in hand
(top-to-bottom)

Table Comment

A B C D Starting setup
B C D A Put the top card on the table
C D B A Put the top card on the bottom
D B A C Put the top card on the table
B D A C Put the top card on the bottom
D A C B Put the top card on the table
D A C B No change, only one card
 A C B D Put the top card on the table

Cards in hand
(top-to-bottom)

Table

A B C D E F G H I J
B C D E F G H I J A
C D E F G H I J B A
D E F G H I J B A C
E F G H I J B D A C
F G H I J B D A C E
G H I J B D F A C E
H I J B D F A C E G
I J B D F H A C E G
J B D F H A C E G I
B D F H J A C E G I
D F H J A C E G I B
F H J D A C E G I B
H J D A C E G I B F
J D H A C E G I B F
D H A C E G I B F J
H D A C E G I B F J
D A C E G I B F J H
D A C E G I B F J H
 A C E G I B F J H D

1 2 3 4 5 6 7 8 9 10
…reordering by letter…
A B C D E F G H I J
1 6 2 10 3 7 4 9 5 8

Question 11: You like ABBA? That’s also my grades this term! (6 pts)

You write a block to returns the number of As in a list of grades. Assume
grades is a list of letters drawn from { A, B, C, D, E, F } – i.e., there are
no A+ or A- or B+ or B- grades, etc., and that grades has at least one
grade in it. The block has a small bug, but sometimes it returns the
correct value!

a) In one sentence, what is the requirement for the grades list so that

the block is guaranteed to return the correct value. It should be the
case that any list that passes your requirement will return the correct
value and any list that fails it will return an incorrect value.
For example (these are all wrong, but it’s in the right spirit):
“grades needs exactly 13 items” or “grades cannot have any Fs”

b) In one sentence, suggest a fix to the code above so that it will work for all inputs.

Question 12: The Big Game? Why not the Big Dance? (12 pts) SID: ______________

Stanford decides to expand the size of its undergrad program until it’s exactly the same size as Cal’s, let’s call
the number of students at each school N. Obviously, the SID system between the two campuses are different,
so you’d like to find out if there’s any student at Cal with the same SID as a student at Stanford. Note that the
algorithm stops whenever someone says “YES” (the same SID was given to a Cal & Stanford student) or “NO”.

Algorithm I – “Musical Chairs” algorithm
1. Dan records all possible pairs of Cal-Stanford students who haven’t met yet (that’s all of them at this

point). Don’t count any of Dan’s “haven’t met yet” record-keeping in the stopwatch time calculation in (d).
2. Dan finds a pair (one from each school) who still haven’t met (assume he can do this in constant time),

pairs them up, and updates his records. If he can’t find a pair, he says “NO”, and we stop.
3. The music starts, everyone else mills around the room and when the music stops, they find a random

partner from a different school (not necessarily someone they haven’t met before).
4. If anyone matches their SIDs with their partner, they say “YES”, and we stop.
5. If not, we repeat 2-5.

Algorithm II – “Two Circles” algorithm
1. All the Stanford students make an inner circle facing out, Cal students

form an outer circle facing in. Everyone stands up across from someone.
2. If anyone matches their SIDs with their partner, they say “YES”, and we stop.
3. Otherwise, both circles move one space to the right, and everyone finds a new partner (e.g., see above).
4. Step 1-3 continues N times, and if nobody has said anything yet, they all say “NO”, and we stop.

Algorithm III – “One at a Time” algorithm
1. If there are no more Cal students, all Stanford students say “NO”, and we stop.

Since it resets the count whenever it finds a non-A, it only works if
all non-As are in the front, and all As are at the end.

Remove the else clause entirely, or change it to “Set As to As” (so it doesn’t reset when it finds a non-A)

A B C D
E

F 1 2 3 4 5

 6

B C D E
F

A 6 1 2 3 4

 5

2. Otherwise, one Cal student steps forward, and one-by-one compares their SID with every student from
Stanford. If any pair of the SIDs match, they both say “YES”, and we stop.

3. If the Cal student finds no Stanford SID matches, the Cal student leaves, and we go to step 1.

a) If each algorithm says “YES”, are you guaranteed
that at least one SID matches? This means there
are no false positives. (select ONE per row)

Algorithm Yes No
Musical Chairs ● ○

Two Circles ● ○
One at a Time ● ○

b) If each algorithm says “NO”, are you guaranteed
that no SID matches? This means there are no
false negatives. (select ONE per row)
Algorithm Yes No Why?

Musical Chairs ● ○
Two Circles ○ ● If N=6 as in diagram, A

will only see 1,3,5.
One at a Time ● ○

c) In the WORST case, what’s the number of comparisons (NOT running time)? If it’s actually between two
categories, pick the bigger category. E.g., N4 is bigger than cubic, so pick exponential. (select ONE per row)

Algorithm Constant Logarithmic Linear Quadratic Cubic Exponential Why?
Musical
Chairs ○ ○ ○ ○ ● ○ N2 iterations, N

comparisons each
Two Circles ○ ○ ○ ● ○ ○ N iterations, N

comparisons each
One at a

Time ○ ○ ○ ● ○ ○ N Cal students, N
comparisons each

d) If the SID comparisons between different pairs of people could happen at the same time, how much elapsed

stopwatch time (NOT running time) would each algorithm take in the WORST case? (select ONE per row)
Algorithm Constant Logarithmic Linear Quadratic Cubic Exponential Why?

Musical
Chairs ○ ○ ○ ● ○ ○ N2 iterations

Two Circles ○ ○ ● ○ ○ ○ N iterations
One at a

Time ○ ○ ○ ● ○ ○ N2 comparisons, each
one at a time

Question 13: Two keeps/maps are better than one! (True? False? True False True?...) (8 pts)

You are given the list . What do the following expressions return? Select ONE per row.
A particular (A-L) choice may be the right answer for several rows (you could have multiple circles in a column).

A

B

C

D

E

F

G

 A B C D E F G H I J K L

If you apply not to each of (T F T), you get (F T F)

○ ○ ○ ○ ○ ○ ● ○ ○ ○ ○ ○

If you keep only the elements that are NOT true (i.e.,
false), you end up keeping only the middle one. The

elements that don’t cause the predicate to return true
aren’t present in the output, so it’s not choice (E).

○ ○ ● ○ ○ ○ ○ ○ ○ ○ ○ ○

This is like flipping the light switch twice, it shouldn’t
change the state of the lights. So the input here is equal

to the ouput.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ●

If you keep only the elements that are not not true, that
means they are true, so you keep only the trues.

○ ○ ○ ○ ○ ○ ○ ○ ● ○ ○ ○

Two cascaded nots means the same thing as flipping
the light switch twice, so the answer is the same as two

above.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ●

Keep not keeps only the false elements (F), and map of
not flips their state so you get (T)

○ ○ ○ ○ ○ ○ ○ ● ○ ○ ○ ○

If you flip all the switches they become (F T F), and if
you keep only the false ones you get (F F)

○ ○ ○ ● ○ ○ ○ ○ ○ ○ ○ ○

If you apply the same filter twice, it doesn’t do anything
the second time, so this answer is the same as only one

keep.

○ ○ ● ○ ○ ○ ○ ○ ○ ○ ○ ○

H

I

J

K

L

Question 14: Berkeley Python Flying Circus… (10 pts = 5 * 2 pts)

>>> R = range(10,20)
>>> list(R[2:4])

○ [2,3,4] ○ [2,3] ○ [11,12] ○ [11,12,13] ● [12,13] ○ [12,13,14] ○ None of these
R is the range (10, 11, 12, 13, 14, 15, 16, 17, 18, 19); it’s 0-indexed so it’s
[12, 13]

>>> A = ["3", "50", "700"]
>>> A[1] + "1"
○ [4] ○ [51] ○ ["4"] ○ ["51"] ○ 4 ○ 51 ○ "4" ○ "51" ○ "31" ● "501" ○ Error
Lists are 0-index so A[1] is "50" and + is string concatenation

>>> def compose(f,g): return lambda x: f(g(x)) ### Pregnant shark
>>> from functools import reduce ### reduce is like Snap!’s combine
>>> def double(x): return x+x
>>> def plus1(x): return x+1
>>> def times2(x): return x*2
>>> frankenstein = reduce(compose, [double, str, plus1, times2, double])

>>> print(frankenstein(10)) ### What input causes 4141 to be printed?
4141
If you reverse everything you get the answer
"4141" à un-double à "41" à un-str à 41 à un-plus1 à 40 à un-times2 à 20 à
un-double à 10

crossmap is a really useful utility function. It takes a dyadic function (i.e., a function of two arguments), and two
lists (not necessarily of equal size) and calls the function on every pair of values (one from each list) and puts
them in a list. So, for example:

>>> def plus(a,b): return a+b
>>> crossmap(plus, [1,2,3], [10,20])
[11, 12, 13, 21, 22, 23]
>>> print(crossmap(plus,"ab","123"))
['a1', 'b1', 'a2', 'b2', 'a3', 'b3']

You realize this would be useful to help you with the desire to create a block that tests whether any SID in a list
of Cal SIDs is the same as the SID of a student in a list of Stanford SIDs! Fill in the blanks to a helper function
and the any_matches function (which takes two lists and returns True if the lists have a shared element).

>>> def helper(a,b): return a == b ## Variant: a – b

>>> def any_matches(CalSIDs, StanfordSIDs):

 return True in crossmap(helper, CalSIDs, StanfordSIDs) ## Variant: 0 in
 or Any()

Question 15: Dictionaries are too hard!… (10 pts = 4+2+4 pts)

Boy, dictionaries sure are great! They allow us to make a connection between keys and values. We want our
smart thermostat AXELA to answer us (in English) how the temperature feels. You assume the coldest it will
ever be is -460º F (absolute 0) and the warmest it’ll ever be is 212º F (boiling point of water). Then you’ll need to
store a connection between temperatures ranges to English words for how you’d feel in that range:

-460º 40º 60º 80º 212º
Cold Cool Nice Hot

What we want is a soft dictionary, where we specify numeric ranges as the keys (as a tuple), and any value
between the left edge (and up to but not including the right edge) should “match” the key. If we asked, “how
does it feel?”, if it were 45º, it’d say “Cool”. If it were 99º, it’d say “Hot”. Let’s build this!

>>> def SD_create(): return {} ### empty soft dictionary (SD)
>>> def SD_add(SD, low, high, value): SD[(low,high)] = value ### key is tuple
>>> sd = SD_create()
>>> SD_add(sd,-460, 40, "Cold") ### For this entire page, assume the
>>> SD_add(sd, 40, 60, "Cool") ### left edge value is smaller than the
>>> SD_add(sd, 60, 80, "Nice") ### right edge value. No need to error check it
>>> SD_add(sd, 80, 212, "Hot")
>>> SD_get(sd, 45) è "Cool"
>>> SD_get(sd, 99) è "Hot"

a) Complete the definition of SD_get so that it works as shown above. Assume the key falls in some range
that you have stored. Also assume that SD_add never had ranges overlap – the ranges in the example
above don’t because they are inclusive of the left edge but exclusive of the right edge, i.e., [left, right).

def SD_get(SD, key):

 for low_high_range in SD:
 ### simultaneous assignment since
 key_low, key_high = low_high_range ### low_high_range is a tuple

 if key_low <= key < key_high

 return SD[range]

 print("ERROR: no range contains key!")

b) Those are some big assumptions. Let’s fix the first one. If the user calls SD_get with a key not in some
range, it should not return anything and print an error message, as shown below. Modify the code above
by adding a print statement (in-between, above or below the lines, indented correctly) to do this.

>>> SD_get(sd, 1000)
ERROR: no range contains key!

c) Now let’s fix the last assumption. Fill in the blank of a new SD_add with code so that adding a range that
overlaps with another range causes it to print an error, and doesn’t modify the soft dictionary.

>>> SD_add(sd, 70, 82, "Perfect")
ERROR: range overlaps!

def SD_add(SD, low, high, value): ### also assume low < high
 for low_high_range in SD:
 key_low, key_high = low_high_range ### simultaneous assignment

 if not(high <= key_low or key_high <= low):
or, equivalently…
 key_low < high and low < key_high:
 print("ERROR: range overlaps!")
 return ### Error, so just return and don’t store anything
 SD[(low,high)] = value ### key is tuple

