
CS10 Paper Final – Summer 2018

________________________________ _________________________ ____________________________
Your Name (first, last) ID Card Number Your TA’s Name

__________________________________ _____________________________________
 Name of person on left (or aisle) Name of person on right (or aisle) 

Fill in the correct circles & squares completely…like this: ● (select ONE) (select ALL that apply)

There are 85 points total for this exam and you have 180 minutes to complete this exam. Use your time wisely.
You get 1 point for putting your ID card number on each page.

Questions 1 – 12: What’s That Smell? It’s Potpourri! (32 points total; 35 min. recommended)

1) (2 pts) Currently, computer scientists develop machines with artificial intelligence to act as rational
agents. This means that they are always trying to maximize:

◯ Human accessibility

◯ Expected utility

◯ Autonomy

◯ Efficiency

◯ Accuracy

2) (3 pts) You want to speed up your final project by using an improved
processor. So you read through your code and realize that 20% of it is
parallelizable. Using Intel’s new 64-core processor, you can achieve a
maximum speedup of 1.245 times (or 24.5%). What is the maximum
speedup you could attain using an infinite number of cores?

(Hint: Remember that the quotient of any number divided by infinity can be approximated as zero.)

3) (2 pts) If a data type in Python is an iterable, what are you always allowed to do with objects of that
data type?

◯ Find a key in the object

◯ Move through the data contained in the object with a for loop

◯ Add and remove items from the object

◯ Write a comment attached to the object

◯ Convert the object into a different data type

ID Card Number: __________________

4) (2 pts) Based on the Algorithmic Bias lecture, why does Google Translate convert the gender-
neutral Turkish phrase “o bir doktor" into the gendered English phrase “he is a doctor”?

◯ English has no gender-neutral pronouns, so the algorithm is forced to use the word “he.”

◯ In English speaking countries, most doctors are men, so the algorithm uses the word “he.”

◯ The algorithm randomly chooses a gendered pronoun when translating gender-neutral

 words into English.

◯ The algorithm was trained using a dataset in which the word “doctor” was frequently

 associated with male pronouns.

◯ The algorithm actively tries to reproduce gender biases that already exist in the English

 language.

5) (2 pts) True or False: If you found an efficient solution to the knapsack problem, you could find an
efficient solution to password decryption.

◯ True

◯ False

6) (2 pts) As described in his guest lecture on Natural Language Processing, why did Nick Adams
create the online text-parsing tool “TagWorks”?

◯ He was displeased with existing interfaces for parsing textual documents.

◯ He wanted to create a tool to allow humans to help computers parse text, because

 computational text parsing is still at a very primitive stage of development.

◯ He thought that existing parsing tools were too reliant on humans, and wanted to create a

 tool that was entirely computer-driven.

◯ He realized that all existing NLP tools were only calibrated to handle numerical data, and

 needed a tool that could handle textual data.

◯ None of the above.

7) (3 pts) Quinary is a number system that utilizes base-5, the same way the
decimal number system utilizes base-10. Convert the decimal number 128 into
quinary. For your reference, 52 = 25, 53 = 125, and 54 = 625.

8) (2 pts) Which of the following exciting and/or problematic issues were mentioned in Schuyler’s
lecture on the Future of Computing? Choose all that apply.

☐ Quantum computing

☐ Income inequality and housing in the Bay Area

☐ Biological computing and DNA-based data

☐ Self-driving cars and automation

☐ The singularity and extreme AI

ID Card Number: __________________

9) (4 pts) Rank the following algorithms from slowest to fastest.

A. Finding a number in an unsorted list by looking at each number one-by-one.
B. Finding a number in a sorted list by comparing the number to the number in the center and
 discarding half of the list repeatedly.
C. Finding a number in an unsorted list by looking at an infinite list of memory where all of the
 positions of the numbers have been saved.
D. Finding a number in an unsorted list by:

 first sorting the list by comparing each number against every other number in the list
 then running a binary search algorithm on the list.

10) (4 pts total) For each of the following code snippets, write what the Sprite would say after the
script executes. If you believe the code causes an infinite loop (i.e., runs forever), write “Loop.” If you
believe the code produces any other error message, write “Error.”

a) (2 pts)

 b) (2 pts)

 Slowest Fastest

ID Card Number: __________________

11) (3 pts) We are trying to write a Python function called repeat_seven, which takes as input a list,
and returns a new list containing the input list repeated seven times. For example:

>>> my_list = [1, 2]
>>> repeat_seven(my_list)
[[1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2]]

Complete our definition of repeat_seven below by writing a one-line list comprehension. Solutions
that are more than one line or do not use a list comprehension will not receive credit.

def repeat_seven(input_list):
 return ___

12) (3 pts) Why is the code to the right a terrible
example of a function? Write a brief explanation
in the box provided below.
(Hint: Think about the definition of a function given
in Jobel’s lecture on “Functions & Procedures.” Is
the code to the right a function? Should it be?)

Question 13: Extra Credit (1 point)

13) What is one thing you learned during the Alumni Panel? (Don’t make something up...we were all
there, and we know what was said.)

ID Card Number: __________________

Question 14: Alonzo Anonymous (8 points total, 25 min.)

Alonzo has a store of new CS10 merchandise to show off, but needs to take inventory before they
can be put on sale. Inside the store’s computer systems, every individual item is stored in a
warehouse inventory list.

We need to write a block called that will tell us the number of times each item appears
in the store’s inventory. We want this block to take in the inventory list and return a new list where
each item is replaced by the number of times it appears in the input list. Take the following example:

a) (3 pts) We’ve come up with a few different ways of solving this question, but Alonzo isn’t sure
which one is correct. Help Alonzo out by choosing the correct implementation.

◯

◯

◯

◯

ID Card Number: __________________

b) (2 pts) Assuming that the , , and
blocks all execute in constant time, what is the worst case runtime of

 as a function of the size of the input list?

○ ○ ○ ○ ○ ○
Constant Logarithmic Linear Quadratic Cubic Exponential

(Hint: Don’t worry about whether your answer to part (a) was correct. All four
of the possible implementations listed have the same runtime (given the
assumptions above).)

c) (3 pts) Now, using the block, write the
block, which takes in an inventory list and returns a list of two-item sublists.
The first item in each sublist is a value in the input list (let’s call it X), and the
second item is the number of times the value X appears in the input list. For
example:

To do this, we’re going to need to use the multi-list map. This map takes in two
lists and a function with two blank input slots, and applies the function to the items
of both lists in a sequential, pairwise fashion. You used this version of map when
completing HW2. Below is an example call:

Fill in the blanks to complete the following implementation of . You do not

need to remove duplicates from the input list. Assume you have a working block.

ID Card Number: __________________

***For questions 15 & 16, you may find it useful to reference the implementation of Count
Change we built during lecture. A copy is provided on the sheet at the end of this exam.***

Question 15: Count Change It Up (9 points total, 25 min.)

As we’re sure you’ll agree, Count Change is a pretty great function. But unfortunately its runtime is
terribly inefficient. To demonstrate this, we’ve tried to write the block “Count Calls for Count Change.”
It takes as input an amount (in cents) and a list of coins, and should output the number of calls
(recursive or non-recursive) to Count Change required to compute a result for these inputs. For some
example calls, see the table below:

Function Call Explanation

Since counting change for amount=0
is a base case, this only requires
one call to Count Change (the initial
call).

This requires three total calls: the
initial call, and recursive call with
amount=0 and coins = [1], and the
recursive call with amount = 1 and
coins = [].

Yeah, so...it’s inefficient.

Question continued on next page....

ID Card Number: __________________

Below is our attempt to implement Count Calls for Count Change. Unfortunately, though, it has a bug.

a) (3 pts) Ideally, if Count Calls for Count Change is working properly, what should the call below
report? Write your answer in the box provided.

b) (3 pts) Using the buggy implementation above, what will the call below report?
Write your answer in the box provided.

c) (3 pts) Below, describe how you can modify our buggy version of Count Calls for Change so that it
works properly. Note: It is possible to fix the code with a very simple modification. If your
answer is unnecessarily long or complex, it may not receive full credit.

ID Card Number: __________________

Question 16: Count Change It Up Again (8 points total, 20 min.)

Another problem with Count Change is that it’s very unrealistic. When will anyone ever have an
unlimited supply of coins? So, let’s write a more realistic version of Count Change: “Count Change
with Limits.” It takes as input an amount and list of coins, similar to the original Count Change. But our
new function also takes a third argument, “LIMIT,” which indicates the maximum number of coins we
can use to make change. It returns the number of ways to make change for AMOUNT using the given
COINS and LIMIT.

Count Change with Limits doesn’t care which coins we use; if the limit is 3, we can use 3 nickels or 2
dimes and a penny. But the function will never use more coins than the limit allows. Again, see below
for sample calls.

a) (2 pts) As a sanity check, what should the following call to Count Change with Limits report? Write
your answer in the box provided.

b) (6 pts) Complete our implementation of Count Change with Limits below. Write all answers in the
boxes provided.

ID Card Number: __________________

Question 17: Object-Oriented Alonzo (9 points total, 25 min.)

Assume we start up the Python interpreter and execute the code below. What will the interpreter print
after each of the following commands? If you believe the code throws any sort of error message, just
write “Error.” If you believe nothing is printed, write “N/A.” Write all answers in the boxes provided.

Note: These questions are NOT independent. You should assume that all lines of code are executed
sequentially as you progress down the page.

class Alonzo_Generator:

 def __init__(self, number):
 self.number = number
 number += 1

 def generate_alonzo(self, name, color, age):
 alonzo = Alonzo(name, color, age)
 return alonzo

class Alonzo:

 floats = True
 enemy = "Terminalonzo"

 def __init__(self, name, color, age):
 self.name = name
 self.color = color
 self.age = 100 + age

 def feels_generator(self):
 self.intro = "I am feeling “
 return lambda x: self.intro + x

class Jobelonzo(Alonzo):

 floats = False
 age = 80

 def __init__(self, name):
 self.name = name

 def teach(self):
 print("Computing in the News")

>>> gen1 = Alonzo_Generator(1)
>>> gen1.number

>>> my_alonzo =
gen1.generate_alonzo(“Alonzo”, “yellow”, 0)
>>> my_alonzo.age

>>> terminalonzo =
gen1.generate_alonzo(“Terminalonzo”, “grey”, 5)
>>> terminalonzo.enemy = “Alonzo”
>>> my_alonzo.enemy

>>> spicelonzo =
gen1.generate_alonzo(“Spicelonzo”, “red”, 10)
>>> spicelonzo_feels =
spicelonzo.feels_generator()
>>> spicelonzo_feels(“spicy”)

>>> jobel = Jobelonzo(“Jobel”)
>>> jobel.teach()

>>> Alonzo.enemy = “Gobo”
>>> enemies = [Jobelonzo.enemy,
terminalonzo.enemy, my_alonzo.enemy]
>>> enemies

ID Card Number: __________________

Question 18: Small World, Big Data (6 points total, 20 min.)

Assume we open a Jupyter notebook, import the datascience and numpy modules (numpy as np),
create a table named “mystery,” and execute the code below.

>>> mystery.column(“Rating”) + 10
array([15, 15, 13, 15, 18, 20])
>>> mystery.sort("Rating", descending=False).select("Sound")

Sound
Moo
Purr
Bark
Roar
Hoo
Woo

>>> mystery.where("Rating", are.equal_to(5)).drop("Rating", "Sound")
Animal
Cat
Dog
Lion

>>> mystery.where("Sound", are.containing("oo")).drop("Rating")
Animal Sound
Cow Moo
Owl Hoo

Alonzo Woo

>>> pets = ["Dog", "Cat", "Alonzo"]
>>> are_pets = np.array([animal in pets for animal in mystery.column("Animal")])
>>> mystery = mystery.with_column("Pet?", are_pets).where("Pet?",
 are.equal_to(len(range(1,4)) == 4))

a) (3 pts) What does the table “mystery” look
like before we execute the code above?
Answer this question by filling in the cells
below.
(Hint: Because we never reassign the variable
“mystery,” you can solve this problem by
looking only at the code above the dashed
line.)

Animal Sound Rating

b) (3 pts) What does the table “mystery” look
like after we execute the code above? Answer
this question by filling in the cells below. You
may not need all cells.
(Hint: You can solve this problem by looking
only at the code below the dashed line and the
table you drew in part (a). Your answer will be
marked correct as long as it is consistent with
the table you drew in part (a).)

ID Card Number: __________________

Question 19: A Not-So-Simple Question (12 points total, 30 min.)

For the purposes of this question, let’s define a compound word as a word composed exclusively of
two simple words. A simple word is any word that cannot be broken into two smaller words. For
example, “blackboard” is a compound word because it consists of exactly two simple words: “black”
and “board.” “Computer,” on the other hand, is a simple word. It is not composed of any shorter
words. “Computerbleh” is also a simple word. While it is composed of one simple word (“computer”),
“bleh” is not a simple word and thus “computerbleh” is not compound.

We want to write a function that, given a word and a list of all known simple words, returns True if the
word is compound, and False otherwise. For example:

>>> simple_words = [“basket”, “base”, “ball”]
>>> compound_word(“basketball”, simple_words)
True
>>> compound_word(“ballbase”, simple_words)
True
>>> compound_word(“alonzo”, simple_words)
False

Below are two attempts to implement compound_word. One of them works; the other is buggy.

def compound_word_1(word, simple_words):
 iscompound = False
 for i in range(len(word)):
 if word[:i] in simple_words:
 if word[i:] in simple_words:
 iscompound = True
 break
 return iscompound

def compound_word_2(word, simple_words):
 i = 0
 iscompound = False
 while not iscompound and i < len(word):
 if word[:i] in simple_words:
 if word[i:] in simple_words:
 iscompound = True
 i += 1
 return iscompound

a) (2 pts) Which of the implementations works correctly? Write your answer in the box below.

b) (2 pts) Below, describe how we can modify the buggy version so that it works properly.
Note: It is possible to fix the code with a very simple modification. If your answer is
unnecessarily long or complex, it may not receive full credit.

ID Card Number: __________________

Now that we’ve got some working implementations, let’s make our function more powerful. In reality,
some compound words contain more than two simple words. So we’ll redefine a compound word as a
word composed exclusively of two or more simple words. We would like to modify compound_word
so that it properly identifies longer compound words, as per the doc tests below:

>>> simple_words = [“wise”, “clock”, “counter”]
>>> compound_word(“counterclockwise”, simple_words)
True
>>> compound_word(“counterclockclockwisecounterclock”, simple_words)
True
>>> compound_word(“counterclockalonzo”, simple_words)
False

c) (8 pts) Complete our implementation of compound_word_3 by filling in the skeleton code below.
You are required to use all lines provided; there are no extra lines in this question.

def compound_word_3(word, simple_words):
 word1 = ''
 index = 1
 for letter in word:

 if word1 in simple_words:
 if___________________or____________________
 return True
 index += 1
 __

(Hint #1: Use recursion somewhere in your implementation.)
(Hint #2: If you try to slice a list using a lower bound that is greater than the index of the last element
in the list, python will simply return an empty list. It will not throw an error message. See the code
below for a few examples.)

>>> cool_list = [“this”, “list”, “is”, “cool”]
>>> cool_list[4:]
[]
>>> cool_list[len(cool_list):]
[]
>>> cool_list[800:900]
[]

ID Card Number: __________________

You may use this page as scratch paper.

ID Card Number: __________________

ID Card Number: __________________

A bunch of Snap blocks are shown below as a reference. For coding problems on this exam,
unless the problem says otherwise, you may use any Snap! block, not just the ones below (we’ve
omitted lots of them, like x, =, split, etc.), although you do not require more than the blocks
provided here. The values input in these blocks are default inputs; you may change them.

ID Card Number: __________________

>>> staff = np.array(["Schuyler", "Jobel", "Jessica", "Maxson"])
>>> fav_nums = np.array([5, 87, 12, 43])
>>> fav_desserts = np.array(["Brownies", "Cookies", "Ice Cream", "Cheesecake"])
>>> staff_table = Table().with_columns(["Staff", staff, "Fav Nums", fav_nums, "Fav
 Desserts", fav_desserts])
>>> staff_table

Staff Fav Nums Fav Desserts
Schuyler 5 Brownies
Jobel 87 Cookies

Jessica 12 Ice Cream
Maxson 43 Cheesecake

>>> staff_table.column("Fav Desserts")

array(['brownies', 'cookies', 'ice cream', 'cheesecake'])

>>> staff_table.column("Staff").item(0)

‘Schuyler’

>>> staff_table.column("Fav Nums") + 10

array([15, 97, 22, 53])

>>> staff_table.drop(“Fav Nums”)

Staff Fav Desserts
Schuyler Brownies
Jobel Cookies

Jessica Ice Cream
Maxson Cheesecake

ID Card Number: __________________

>>> staff_table.relabeled(“Fav Desserts”, “Yummy Treats”)

Staff Fav Nums Yummy Treats
Schuyler 5 Brownies
Jobel 87 Cookies

Jessica 12 Ice Cream
Maxson 43 Cheesecake

>>> staff_table.sort("Fav Nums", descending=True)

Staff Fav Nums Fav Desserts
Jobel 87 Cookies
Maxson 43 Cheesecake
Jessica 12 Ice Cream
Schuyler 5 Brownies

>>> staff_table.select(“Staff”)

Staff
Schuyler
Jobel

Jessica
Maxson

>>> staff_table.where(“Fav Nums”, are.above(42))

Staff Fav Nums Fav Desserts
Jobel 87 Cookies
Maxson 43 Cheesecake

>>> staff_table.with_column("Likes Cookies?", staff_table.column("Fav Desserts") ==
 "Cookies").where("Staff", are.containing("J"))

Staff Fav Nums Fav Desserts Likes Cookies?
Jobel 87 Cookies True

Jessica 12 Ice Cream False

