
Final Exam CS10 Summer 2017
Name: _____________________ Student ID: __________________ Lab TA: ⃝ Jobel ⃝ Angela
Q1: Graph Terminology
Which of the following terms could describe the graph to the right?
(select all that apply)

⬜ Tree ⬜ Acyclic
⬜ Disconnected ⬜ Directed

Q2: Quantum Computers (Week 8 Reading)
Which of the following is true about quantum computers, according to the article “Here’s why we
should be really excited about quantum computers"? (select all that apply)
⬜ A quantum bit can exist as a 1, or a 0, or both at the same time.
⬜ Quantum computers could revolutionize entire industries.
⬜ Quantum computers are better than normal computers at performing calculations with many numbers.
⬜ Quantum computers can be programmed to act similarly to human brains.

Q3: P vs. NP (Week 8 Reading)
According to the video “P vs. NP and the Computational Complexity Zoo”, which of the following best
describes the P and NP classes of problems? (pick one)

⃝ P problems’ solutions can be verified quickly; NP problems can be solved quickly.
⃝ P problems can be solved quickly; NP problems cannot be solved quickly.
⃝ P problems can be solved quickly; NP problems’ solutions can be verified quickly.
⃝ P problems’ solutions can be verified quickly; NP problems’ solutions cannot be verified quickly.

Q4: What is Information Theory? (Week 8 Reading)
What do a song, a telegraph, an email, and a drawing have in common, according to the video? (pick one)
⃝ They are made of bits.
⃝ They are universal forms of communication.
⃝ They can carry the same amount of information.
⃝ They have the same information density.

⃝ Design, Test & Evaluate, Prototype, Repeat
⃝ Prototype, Design, Test & Evaluate, Repeat
⃝ Prototype, Simplify, Test & Evaluate, Repeat
⃝ Design, Simplify, Test & Evaluate, Repeat
⃝ Design, Prototype, Test & Evaluate, Repeat

Q5: UI and Design
Which of the following steps describe the iterative design cycle in order? (pick one)

⬜ Everything that connects to the internet needs an IP address
⬜ We ran out of unique IPv4 addresses
⬜ DNS translates domain names like “facebook.com” to IP addresses
⬜ We will probably run out of IPv6 addresses in the next five years

Q6: Internet & IP Addresses
Which of the following are true statements about IP addresses? (select all that apply)

Student ID: __________________

Q8: A Game of San Francisco vs. Oakland
A man and a woman are planning a trip. They can each choose to go to either San Francisco or Oakland.
Their utilities for every outcome are shown below. Which outcome is an equilibrium? (pick one)

Hint: It might help to first consider the man’s optimal strategy.

⃝ A

⃝ B

⃝ C

⃝ D

constant logarithmic linear quadratic exponential something else
⃝ ⃝ ⃝ ⃝ ⃝ ⃝

Q7: Runtime the Jewels

You will determine the runtime of the following expression in terms of the size (length) of each input
separately. takes linear time in terms of the length of its list input, and constant
time in terms of the length of its text input.

What is the runtime complexity of the expression in terms of the length of the word ?

constant logarithmic linear quadratic exponential something else
⃝ ⃝ ⃝ ⃝ ⃝ ⃝

What is the runtime complexity of the expression in terms of the length of ?

constant logarithmic linear quadratic exponential something else
⃝ ⃝ ⃝ ⃝ ⃝ ⃝

Replace with a second instance of . What is the runtime complexity in terms
of ?

constant logarithmic linear quadratic exponential something else
⃝ ⃝ ⃝ ⃝ ⃝ ⃝

What is the runtime complexity of the expression in terms of the length of ?

Q9: Distributed Computing
According to Alex Mckinney’s lecture on distributed computing, which of the following is a reason why
idempotence is important in a distributed program? (pick one)
⃝ Machines in datacenters may fail unexpectedly, so you must have multiple copies of the same data.

⃝ Malicious users could take advantage of your system by sending many requests at the same time, so
you must make sure only one request actually gets executed.

⃝ Having internet connection 99.99% of the time is not guaranteed, so you must make a program that
continues running when the network is down.

⃝ Distributed programs send user requests to datacenters around the world, so you must make sure
your code runs correctly independent of the machine it’s run on.

Student ID: __________________

Q10: Con-What Cur-Is Ren-My Cy-Name
Which of the following could be the value of global variable my_name when the green flag is clicked
and after both scripts below finish executing? (select all that apply)

Yifat Steven Yifat Bear Steven Oski Yifat BearOski Steven Yifat Oski Yifat OskiBear

⬜ ⬜ ⬜ ⬜ ⬜ ⬜ ⬜ ⬜

Q11: Graph Abstraction
Which of the following undirected graphs correctly abstracts the following map of islands and bridges?
(pick one)

⃝ �

 ⃝ ⃝ �

⃝

Student ID: __________________

Q12 a): Setting You Up For Success

A set is similar to a list, with one major difference: it cannot
contain duplicate values. If you try to add a value to a set
that already contains that value, no value should be added.
Furthermore, sets are unordered, so we do not care about the
positions of values in a set. empty_set reports an empty set.

First, we’ll write the block add_value_to_set. Some example
inputs and outputs are shown to the right (the output appears
like a list, but we will treat it as a set).

A
B

C

Complete code using the blanks for A, B, and C.

Next, we’ll write the set_from_list block. It takes a list as
input, and reports a set. In other words, it removes
duplicate values from the list. Remember that sets are
unordered, so we don’t care if the
order of the values change when
we run operations.

Some example inputs and outputs are shown
to the right. Complete the blanks for D, E, F, and G so
that the block works as described.

Points for this problem do not rely on correctness of the
previous block.

D E F G

⃝ ⃝ ⃝ ⃝

⃝ ⃝ ⃝ ⃝

⃝ ⃝ ⃝ ⃝

⃝ ⃝ ⃝ ⃝

⃝ ⃝ ⃝ ⃝

⃝ ⃝ ⃝ ⃝

⃝ ⃝ ⃝ ⃝

D
E

F G

A B C
⃝ ⃝ ⃝

⃝ ⃝ ⃝

⃝ ⃝ ⃝

⃝ ⃝ ⃝

⃝ ⃝ ⃝

⃝ ⃝ ⃝

⃝ ⃝ ⃝

Student ID: __________________
The union of two sets, A and B, is a new set that contains items found in just A, just B, or both A and B.

Here are two examples of union:

 => [3, 1, 2, 4] => [1, 2, 4]

b) The intersection of two sets, A and B, is a new set that contains only items found in
both A and B. Please fill in the block definition to achieve this operation. You may use
previous whatever Snap! blocks you’d like, including those introduced in problem 12.
You may not need all of the lines.

c) The difference of two sets, A and B, is a new set that contains only items found in
just A or just B. If an item is in both A and B, it is not included. Please fill in the block
definition to achieve this operation. You may use previous whatever Snap! blocks you’d
like, including those introduced in problem 12. You may not need the xor variable.

example

example

Q13: Debugging in Python
We have attempted to write a function, index(item, lst), that returns the index of item in the list
lst. Here are a few examples of how the function should work:

	 	 >>> my_list = [2, 3, 4, 5, 6]

>>> index(2, my_list) # 2 is in the beginning of the list
0
>>> index(5, my_list) # 5 is in the middle of the list
3
>>> index(7, my_list) # 7 is not in the list
-1

We begin by writing the function using iteration, but there seems to be a bug.

	 	 def index(item, lst):
for i in range(0, len(lst)):

if lst[i] == item:
return i

else:
return -1

a) What will the buggy code above output for the following call? (pick one)

	 	 >>> index(2, [1, 2, 3])

b) Briefly describe the bug in the code above. __

___.

We decide to rewrite the function using a different form of iteration, but unfortunately there’s another
bug.

	 	 def index(item, lst):

i = 0
current = lst[i]
while current != item:

i = i + 1
current = lst[i]

if current == item:
return i

else:
return -1

c) What will the buggy code above output for the following call? (pick one)

	 	 >>> index(4, [1, 2, 3])

d) Briefly describe the bug in the code above. ___

__.

Yet again, we decide to rewrite the function. This time we use recursion. Unfortunately there’s another
bug.

	 	 def index(item, lst):

if lst[0] == item:
return 0

else:
return 1 + index(item, lst[1:])

⃝ ⃝ ⃝ ⃝
-1 0 1 Error

⃝ ⃝ ⃝ ⃝
-1 0 1 Error

Student ID: __________________

e) Fill in the blanks below with an example of inputs to the function that would illustrate the bug in the
buggy code above. Then explain why those inputs illustrate the bug.

index(______________, ____________________________) would illustrate the bug because

__

__.

f) On the line below, implement index using only a Python list comprehension. Unlike before, the
index function should return a list of all of the indices at which item appears in lst. If item is not in
lst, the function should return an empty list.

	 	 def index(item, lst):

return ___

Student ID: __________________

Q14: Slice Slice Baby

In Python, we have the concept of slicing, where we can use indices to extract a substring. Let’s make
our own slicing operation in Snap!. Here are some examples of how this operation should behave:

Complete the code so that the slice function
works as above. You can assume that the
inputs to the block are valid.

Note that the indices are treated as inclusive,
and indexing starts at 1 like usual in Snap!.

You may find the following two blocks useful.
You are free to use other blocks as well.

i.

ii.

iii.

i. ___

ii. ___

iii. ___

Q15: Say Cheese

A mouse is in a maze, and is searching for the cheese. To find the cheese, the mouse will use a
Snap! block. The strategy involves leaving crumbs so that it knows where it’s been.

Reports true if the given
tile has cheese on it.

Places a crumb on the
given tile.

Reports true if the given
tile has a crumb on it.
Reports a list of all tiles
that are next to the given
tile in random order.
Squares colored black
will not be included.

C

5 6 7

4

3

S 1 2

To the right is an potential result of the the
algorithm. The mouse starts from the tile marked
“S”, and there is cheese on the tile marked “C”.
Tiles are marked in the order that crumbs were
left on them. If a tile does not have a number, no
crumb was left on it.

Please mark two different, unique potential
results of the algorithm in the same fashion.
Blank mazes are provided below.

C

S

C

S

a) b) c) How many ways are
there for the mouse to
find the cheese using
this algorithm in this
scenario?

Student ID: __________________

d) Which search
algorithm does this
code best represent?

A bunch of Snap blocks are shown below as a reference. For coding problems on this exam,
unless the problem says otherwise, you may use any Snap! block, not just the ones below (we’ve
omitted lots of them, like +, -, split, etc.)

