What's that Smell? Oh, it's Potpourri! (2 pts each for 1-11, low score dropped)

Fill in the correct circles \& squares completely...like this: (select ONE) (select ALL that apply)
Question 1: Who gave the "Mother of all Demos", introducing the mouse to the world? (select ONE)

Alan Turing	Bill Gates	Steve Jobs	Doug Englebart	Ivan Sutherland	Maus Klein	Jim Maus	Eric Paulos

Question 2: The internet uses an end-to-end architecture. That means... (select ONE)
O They lay fiber-optic cable starting from one end to the other, rather than starting in the middle and going out.
\bigcirc The network gateways, switches and routers have all the "intelligence", e.g., encrypting and decrypting files.
\bigcirc The network requires computers and devices on its ends have unique IP addresses, like 128.32.169.12.
O The network connects devices all across the world, from one "end" of the earth to the other.
\bigcirc None of the above.
Question 3: A polynomial-time solution to the knapsack problem means that for the first time... (select ONE)
\bigcirc We can now verify a randomly-generated knapsack problem solution in polynomial time.
○ We can now verify a randomly-generated subset sum problem solution in polynomial time.
O We can now solve the knapsack problem approximately.
O We now have a heuristic to solve the knapsack problem.
O We can now solve the subset sum problem in polynomial time.
O We can now solve every exponential-time problem in polynomial time.
O None of the above.
Question 4: Which of the following is true? (select ONE)
O Most software is written by individuals working alone.
O Parallel programming is a solved problem.
O Fortran is the most common programming language in scientific code.
O Performance is the top goal in software.
O Most software is rewritten from scratch every few years.
O None of the above.
Question 5: Which of the following are part of the traditional "interface design cycle"? (select ALL that apply)

| Abstract | Ideate | Refine | Design | Prototype | Iterate | Evaluate | Analyze | Debug | Visualize |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Publicize

Question 6: Why did we move from IPv4 to IPv6? Because IPv4... (select ONE)

| \bigcirc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| didn't support newer fiberoptic cables | didn't have enough bandwidth | didn't have enough througput | couldn't handle the noise | didn't support newer protocols. | couldn't travel the distance of IPv6 | didn't have enough addresses | None of these |

Question 7: What did the halting problem prove? (select ONE)
O Not all problems were decidable.
\bigcirc You can write a program to decide if another program would halt (not run forever) on its input.
O The traveling salesman problem was NP-complete.
O The subset sum problem was NP-complete.
O Determining whether a program would halt on its input can be done in less than exponential time.
$\bigcirc P=N P$.
○ P!=NP.
O None of the above.

O Cellphones have cancer－causing radiation．
Cellphones are one of the leading causes of traffic fatalities due to distracted driving．
O Cellphones have mobile apps that are＂killing＂the brains of young people with social apps．
O Parallel system architects are looking to cell phone processors to understand how to manage power better．
O Computational scientists are building software so people can use their cell phones as a＂volunteer cluster＂．
O Parallel system architects are worried scientists may start using many cell phones for their computations．
O None of the above．
Question 9：You plan to test an algorithm with a set of very extensive test cases．Which is true？（select ONE）
O Only if it fails all test cases is the program incorrect．
O Only if it fails more than half is the program incorrect．
O If it passes more than half，the program is considered correct．
O If it passes all of them，the program is considered correct
O
None of the above．
Question 10：YouTube now uses 64 instead of 32 bits to count views．How many more is that？（select ONE）

\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$2^{32} x$
$2 x$	$32 x$	$64 x$	$2^{2} x$	$2^{64} x$	None of these	

Question 11：A coin has two sides，labeled＂ 1 ＂and＂ 2 ＂．Consider the goal of simulating the results of flipping the coin five times，and displaying the sum from the five flips．Which of the following code segments will produce the appropriate results？Hint：Compare the \＃of ways there are of summing to 5 vs ． $7 \ldots$（select ONE）

Question 12a－d：どうもありがとうミスターロボット Dōmo arigatō，Mr．Roboto 2．．．（12＝3＋3＋3＋3 pts）
We tried to rewrite our midterm maze script to visit all the letters A－H in the maze． Here are our four attempts，let us know the letters they each visit．

move forward	rotate left	can move left？
The robot moves INPUT squares forward in the direction it＇s facing．	The robot turns，in－place． \｛left＝counterclockwise， right＝clockwise， around $=$ u－turn $\}$	Reports true if the robot has a free square to its \｛left，front，right\}; otherwise reports false．The last one reports true if can＇t move left，forward and right．

Question 13a-c: Magical Mystery Tour, step right this way... ($13=5+5+3$ pts) SID:

We're now to going to zoom in on pixels affected by calls to Mystery; the sprite always starts facing right in the lower left, and the pen is in the center of the sprite. The top two images are the pixels before and after a call to Mystery with LEVELS set to 0 . Your job is to shade in (completely!) all the pixels that will be colored in after calls to Mystery with LEVELS set to 1 and 3; don't worry about drawing the location of the sprite at the end. (If you need scratch space for the LEVELS set to 2 case, use the "Before the call to Mystery" pixels below)

We're told that it actually costs a dollar to fill in all the pixels drawn by Helper. Which expression best captures the cost (in dollars) for this call? (select ONE)

	\bigcirc									
L	$\frac{1}{2} * \mathrm{~L}$	N	$\frac{1}{2} * \mathrm{~N}$	$\mathrm{~L} * \mathrm{~N}$	$\frac{1}{2} * \mathrm{~L} * \mathrm{~N}$	$\mathrm{~L}^{\mathrm{N}}$	$\frac{1}{2} * \mathrm{~L}^{\mathrm{N}}$	N^{L}	$\frac{1}{2} * \mathrm{~N}^{\mathrm{L}}$	None of these

Question 14a-c: On your mark, get set?, go! ($12=4+4+4$ pts $)$
SID: \qquad
Consider the problem of wanting to determine if a list is a set (i.e., every element is unique, there are no duplicates). What's wrong (if anything) with each of the following 3 attempts? (select ONE from each legend)

Example calls to set?

$A=$ it works fine.
$B=$ It will cause an error or run forever.
C = It always returns true.
$\mathrm{D}=\mathrm{It}$ always returns false.
$\mathrm{E}=$ If it's the empty list, true, otherwise it always returns false
$\mathrm{F}=$ If it's the empty list, false, otherwise it always returns true
$\mathrm{G}=$ If it's the empty list, true, otherwise it only returns whether the first element is in the list multiple times
$\mathrm{H}=$ If it's the empty list, true, otherwise it only returns whether the last element is in the list multiple times

Note that or and and don't even look at their right input if the left input is true or false, respectively. Witness:

ОООООООО
ABCDEFGH

report

```
empty? data or
```

 not all but first of data) contains item \(1 v\) of data) and
 set? all but first of data
 Question 14d-e: On your mark, get set?, go! ($15=12+3$ pts)
SID: \qquad
Author a working set? block by choosing one from A , one from B , one from C . (select ONE from each)

What is the running time of this set? block?
O Constant
O Logarithmic
O Linear (select ONE)
O Quadratic
O Exponential
set A to length of data

Question 15a-f: Berkeley Python Flying Circus... (13 = 2+2+2+2+2+3 pts)
SID: \qquad
Interpreter fun! For each, choose ONE that best matches what would display on the next line.
>>> S = "Berkeley"
>>> S [1:3]

O	○	○		\bigcirc	\bigcirc
Be	Ber	erk	er	Error	None of these

Note that some of the code might have bugs!
We include "Error" and "None of these" in case the output is not what is expected.
>> [N ** 2 for N in range(4) if N ! = 2]

| \bigcirc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[0,1,3]$ | $[0,2,6]$ | $[1,3,4]$ | $[1,6,8]$ | $[0,1,9]$ | $[1,9,16]$ | Error | None of these |

>>> "".join([word[0] for word in "Univ of Calif at Davis" if not(len(word) == 2)])

"UCD"	UCD	"oa"	oa	UoCaD	"UoCaD"	Error	None of these

```
>>> f1 = lambda x: x+x
>>> f2 = lambda y: y > "9"
>>> list(map(lambda f: f("10"), [f1, f2]))
```

| \bigcirc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [20, True] | [1010, True] | ["1010", True] | [20,False] | [1010,False] | ["1010", False] | Error | None of these |

(there was some typing here, probably defining the school variable)
>>> school
"cal"
>>> if school = "berkeley":
... print("go " + school)
... else:
... print("not here")

○	○	○	○	○	○	○	○
go berkeley	go cal	not here	"go berkeley"	"go cal"	"not here"	Error	None of these

We're trying to make a histogram function that returns the count of every item in data, for example histogram([7,8,8,8,9]) $\rightarrow\{7: 1,8: 3,9: 1\}$. Check the box for every syntax or logical error you find.

define histogram(data):

D = \{\} ;; ; empty histogram
foreach item in data:
if item in $D:$
D[item] $=0$
else
D[item] = D[item] + 1
report D

