UC Berkeley's CS10 Fall 2016 Final Exam : Instructor Dan Garcia

Your Name	(first las	t)		SID		Lab	TA's Name
← Name of person on left (or aisle) Name of person on right (or aisle)							aisle) 🗲
What's that Smell? Oh, it's Potpourri! (2 pts each for 1-11, low score dropped)							
Fill in the correct circles & squares completely…like this: ● (select ONE) ■ (select ALL that apply)							
Question 1: Who gave the "Mother of all Demos", introducing the mouse to the world? (select ONE)							
0	0	0	0	0	0	0	0
Alan Turing	Bill Gates	Steve Jobs	Doug Englebart	Ivan Sutherland	Maus Klein	Jim Maus	Eric Paulos

Question 2: The internet uses an *end-to-end architecture*. That means... (select ONE)

- O They lay fiber-optic cable starting from one end to the other, rather than starting in the middle and going out.
- O The network gateways, switches and routers have all the "intelligence", e.g., encrypting and decrypting files.
- O The network requires computers and devices on its *ends* have unique IP addresses, like 128.32.169.12.
- O The network connects devices all across the world, from one "end" of the earth to the other.
- O None of the above.

Question 3: A polynomial-time solution to the knapsack problem means that for the **first time**... (select ONE) O We can now *verify* a randomly-generated knapsack problem solution in polynomial time.

- O We can now verify a randomly-generated subset sum problem solution in polynomial time.
- O We can now solve the knapsack problem *approximately*.
- O We now have a *heuristic* to solve the knapsack problem.
- O We can now solve the *subset sum* problem in polynomial time.
- O We can now solve *every exponential-time problem* in polynomial time.
- O None of the above.

Question 4: Which of the following is true? (select ONE)

- O Most software is written by individuals working alone.
- O Parallel programming is a *solved problem*.
- O Fortran is the most common programming language in scientific code.
- O *Performance* is the top goal in software.
- O Most software is *rewritten from scratch* every few years.
- O *None* of the above.

Question 5: Which of the following are part of the traditional "interface design cycle"? (select ALL that apply)

Abstract	Ideate	Refine	Design	Prototype	Iterate	Evaluate	Analyze	Debug	Visualize	Publicize

Question 6: Why did we move from IPv4 to IPv6? Because IPv4... (select ONE)

0	0	0	0	0	0	0	0
didn't support	didn't have	didn't have	couldn't	didn't support	couldn't travel	didn't have	None
newer fiber-	enough	enough	handle the	newer	the distance	enough	of
optic cables	bandwidth	througput	noise	protocols.	of IPv6	addresses.	these

Question 7: What did the halting problem prove? (select ONE)

O Not all problems were *decidable*.

O You *can* write a program to decide if another program would halt (not run forever) on its input.

O The traveling salesman problem was NP-complete.

O The subset sum problem was NP-complete.

- O Determining whether a program would halt on its input can be done in less than exponential time.
- O P = NP.
- O P != NP.

O None of the above.

Question 8: What is the "Attack of the Killer Cellphones"? (select ONE)

SID:

- O Cellphones have cancer-causing radiation.
- O Cellphones are one of the leading causes of traffic fatalities due to distracted driving.
- O Cellphones have mobile apps that are "killing" the brains of young people with social apps.
- O Parallel system architects are looking to cell phone processors to understand how to manage power better.
- O Computational scientists are building software so people can use their cell phones as a "volunteer cluster".
- O Parallel system architects are worried scientists may start using many cell phones for their computations.
- O None of the above.

Question 9: You plan to test an algorithm with a set of very extensive test cases. Which is true? (select ONE) O Only if it fails all test cases is the program incorrect.

- O Only if it fails more than half is the program incorrect.
- O If it passes more than half, the program is considered correct.
- O If it passes all of them, the program is considered correct
- O None of the above.

Question 10: YouTube now uses 64 instead of 32 bits to count views. How many more is that? (select ONE)

Question 11: A coin has two sides, labeled "1" and "2". Consider the goal of simulating the results of flipping the coin *five* times, and displaying the *sum* from the five flips. Which of the following code segments will produce the appropriate results? *Hint: Compare the # of ways there are of summing to 5 vs. 7...* (select ONE)

Question 12a-d: どうもありがとうミスターロボット Dōmo arigatō, Mr. Roboto 2... (12=3+3+3+3 pts)

We tried to rewrite our midterm maze script to visit all the letters A-H in the maze. Here are our four attempts, let us know the letters they each visit.

Consider the following two blocks and setup code: when **clicked** clear Mystery length #) with n #) helper levels pen down Mystery 16 with **LEVELS** helper levels if $\langle \mathbf{n} \rangle = \mathbf{0} \rangle$ pen up move length steps Helper length # else Mystery (length) / 2) with (n) – 1) helper levels turn 👆 90 degrees Helper (length) / 2 move length steps move (0 – length) steps Mystery (length) / 2) with (n) – 1) helper levels turn 🔿 🧐 degrees

SID:

We're now to going to zoom in on pixels affected by calls to Mystery; the sprite always starts facing right in the lower left, and the pen is in the *center* of the sprite. The top two images are the pixels before and after a call to Mystery with LEVELS set to 0. Your job is to shade in (completely!) *all* the pixels that will be colored in after calls to Mystery with LEVELS set to 1 and 3; don't worry about drawing the location of the sprite at the end. (*If you need scratch space for the LEVELS set to 2 case, use the "Before the call to Mystery" pixels below*)

Question 14a-c: On your mark, get set?, go! (12 = 4+4+4 pts)

SID:

Consider the problem of wanting to determine if a list is a *set* (i.e., *every* element is unique, there are no duplicates). What's wrong (if anything) with each of the following 3 attempts? (select ONE from each legend)

Question 14d-e: On your mark, get set?, go! (15 = 12+3 pts)

Author a working set? block by choosing one from A, one from B, one from C. (select ONE from each)

occurrences of item in data 🗄 report length of keep items such that ((item) =)) from (data set? data script variables (A) (B) (С) () What is the running time of this set? block? set A v to 0 O Constant O Logarithmic set A v to 1 O Linear (select ONE) O Quadratic set A v to 2 O Exponential set A v to (length of (data) set B 🔻 to occurrences of in data Α set B 🗸 to occurrences of (data) in set B - to occurrences of (data) in < in (data set B - to Α occurrences of < B set B 🔻 to occurrences of in data not = set B 🔻 to not occurrences of (data) in 🗏 = occurrences of (data) in (set B v to not < occurrences of < not < set B 🔻 to = in data Α set C v to empty? keep items such that B from data set C v to < empty? < not (keep items such that B) from (data set C to not empty? keep items such that B from data set C v to (not keep items such that B) from data report (C

SID:

Interpreter fun! For each, choose ONE that best matches what would display on the next line.

>>> S = "Berkeley" >>> S[1:3]	Note that some of the code might have bugs! We include "Error" and "None of these"						
Be Ber erk er Error None of thes							
>>> [N ** 2 for N in range(4) if N	!= 2]						
0 0 0 0	0 0 0 0						
[0,1,3] $[0,2,6]$ $[1,3,4]$ $[1,6,8]$	[0,1,9] [1,9,16] Error None of these						
<pre>>>> "".join([word[0] for word in "Univ of Calif at Davis" if not(len(word) == 2)]) O O O O O O O O</pre>							
"UCD" UCD "oa" oa UoCaD "UoCaD"	Error None of these						
<pre>>>> f1 = lambda x: x+x >>> f2 = lambda y: y > "9" >>> list(map(lambda f: f("10"), [f1, f2]))</pre>							
0 0 0	0 0 0 0 0						
[20, True] [1010,True] ["1010",True] [20,False] [1010,False] ["1010",False] Error None of these						
<pre>>>> school "cal" >>> if school = "berkeley": print("go " + school) else: print("not here")</pre>							
0 0 0 0	0 0 0 0						
go berkeley go cal not here "go berk	eley" "go cal" "not here" Error None of these						
<pre>We're trying to make a histogram function that returns the count of every item in data, for example histogram([7,8,8,8,9]) → {7:1, 8:3, 9:1}. Check the box for every syntax or logical error you find.</pre> <pre> define histogram(data): D = {} ;;; empty histogram foreach item in data:</pre>							
1. Explain the bugs with histogram in your own words.	Yakka Food Mog. Grug Pubbawup zink wattoom Gazork. Chumble Spuzz.						
My My My							