
Discussion 6: Intro to Recursion
Factorials are Factorials Times Factorials

Factorials are defined as the product of a positive integer and all consecutive smaller
positive integers. For example, factorial(5) = 5 x 4 x 3 x 2 x 1. Fill in the code below to
recursively compute a factorial. Don’t worry about the case of n < 1.

factorial(n):

if _:

report

else:

report

PalindromeemordnilaP

(a) A palindrome is a word that is spelled the same way forwards and backwards. In other
words, the first letter must equal the last letter, the second letter must equal the second to last
letter ... etc. For the purposes of this problem, all zero-letter and one-letter words are
palindromes.

Using the above information, fill in the recursive palindrome function. You have access to
the two functions below.

all-but-first-letter-of(word)

reports word with the first letter removed
all-but-last-letter-of(word)

reports word with the last letter removed

is (word) a palindrome?:

if :

report

else:

if :

report

else:

report

(b) Fill in the progression of calls to: is (racecar) a palindrome?

is (racecar) a palindrome?

is () a palindrome?

is () a palindrome?

is () a palindrome?

Where are These Cats Coming From?!

In the following exercise, we will address how to construct and how to think about fractals
recursively. You may assume that the sprite starts off at the leftmost part of each level, facing
right. Note that each level is 1/3 of the size of the previous level.

Level 1:

Level 2:

Level 3:

Level 4:

1) Which level corresponds to the base case?

2) For our base case, in what direction does our sprite start and end in?

3) In each level, circle each instance of the previous level. Each of these instances refers to
one recursive call.

4) What does the sprite do between each of the recursive calls?

Challenge Problems

1) Write the function “Boring Multiply,” which takes as input a number and a list, and recursively
multiplies every item of the list by the number. It should output a new list containing the
multiplied values (in order) without modifying the input list.

Boring Multiply:

if :

report

else:

report

2) Now the real fun begins. Write the function “Index Multiply,” which takes as input a list, and
recursively multiplies every item of the list by its index (i.e., position) in the list. It should
output a new list containing the multiplied values (in order) without modifying the input list.
This problem is harder than it may seem at first glance…don’t be afraid to think creatively!

Index Multiply:

if :

report

else:

report

Below are some blocks that you may find useful in writing your solutions to the challenge
problems.

Block Description

 Reports a new list containing all items of the
input list, except the first item.

 Reports a new list containing all items of the
input list, except the last item.

 Appends the input item to the front of the input
list, and reports this combination as a new list.

 Reports the length of the input list.

 Retrieves the given item of the input list. The
“item” variable may be set to any number, “last,”

or “random.”

 Appends the two (or more) input lists into a
single aggregate list, reporting the output as a

new list.

 Reports whether the input list is empty.

