
Discussion 5: Concurrency 
 
Concurrency 

1. CS10 has decided to open a pizzeria! To make a pizza, the following tasks must be completed:  
 
Task Time 
Make the dough 25 minutes 
Make the sauce 25 minutes 
Prepare the toppings 10 minutes 
Assemble the pizza 10 minutes 
Bake the pizza 50 minutes 

 
 
c. Based on Amdahl’s Law, how fast can we make a single pizza? ______________________ 
 
 
d. How many employees would the pizzeria need to make a pizza this fast? ______________ 
 
 
e. Would adding an employee to your answer from part (d) change the time it takes to make a 
pizza?  

  
 __________________________________________________________________________ 
 

2. Assume we click the green flag to run the code below, then wait 60 seconds. What are all the 
possible values of magic after 60 seconds have elapsed? 
 

  
 

            
 
 
 Possible values of magic: ___________________________________________________  
 
 

a. Which of these tasks must be completed in serial?  
 
__________________________________________ 
 
b. Which of these tasks can be completed in parallel? 
 
__________________________________________ 
 
 

Assemble Pizza, Bake pizza

Make dough, make sauce, prepare toppings

No it would not because we are limited by the serial portion

X the code will get caught in a deadlock

infinity
(in real life 3 workers)

1 hour 
(in real life 1 hr 25 minutes)



 
3. Which of the following could be the value of my_name after the green flag is clicked? 

 

                       
 

Dan 
 

Garcia Dan Bear Garcia Oski Dan BearOski Garcia Dan Oski Dan OskiBear 

 
 
Testing 
The following questions are based off this block: 

 
1. We try to test our code, but we get an error. What does it mean and how can we fix it? 

 
_______________________________________________________________________ 
 

_______________________________________________________________________ 

 

2. Now, we try to run the following test, but it doesn’t work as expected: 

 
Why does it output this, and how could we fix it?  

_______________________________________________________________________ 
 

_______________________________________________________________________ 

 

The test block requires that all inputs for the function being tested be contained in a list. Here the input is a two-item list, so this list must be inserted into an outer list. The correct input should be list(list(1, 2)). Note that this is not true for the outputs (i.e., the output given here is formatted correctly). As a side note, if you ever see the error message above, you are probably using lists incorrectly somewhere in your code, likely by passing an invalid argument to a function.

square numbers is mutating the input list! The first time we run square numbers with my list, the list is changed to [1, 4]. That means that the second time we try to run square numbers with input my list, we are running the function with input [1, 4]. This gives us output [1, 16] (not matching our expectations, and thus failing the test). We can fix this by making sure that square numbers is not using the replace block to mutate the input list. Instead, it should square the values in the input list and add them to a new output list (perhaps by using HOFs).



3. Assuming we haven’t changed the code for square numbers, what should we expect this 
block to output? Is it any different from the output from part 2?  
 

 
 

_______________________________________________________________________ 
 

_______________________________________________________________________ 

 

Challenge 
1. List all possible values of grade after the green flag is clicked.  

 
 
 
 
 
 
 
 
 
 
 
 
Here are the definitions of the blocks used in the above scripts: 
 
 
 
 
 
 
 
 
Possible values of grade: 

 

The test block will output [True, True] here. square numbers still mutates the input list, but because we are using a different input list each time we call square numbers, the mutation is not propagated between test cases. This example highlights the (often tricky) subtlety of mutability, as well as the necessity of having comprehensive test cases. If our test cases did not try using the same list as input twice, we would not catch the bug.

Using a strategy similar to those described above, we can compute that the possible values are 225, 150, 105, and 195.


