
Functions as Data & Recursion III

Functions as Data

1. A higher order function is a function that takes in a function as input.

2. What does the grey ring in Snap! do?

The grey ring, when placed around a function, tells Snap! to treat that function as a piece of
data as opposed to evaluating it.

3. What does the block do? What does the block do? What is the

difference between them?
Both blocks can execute ringified blocks. The call block executes reporters while the run
block executes commands.

4. What does each of the following calls to “map” report?

a.

[6, 7, 8]

b.

Error: Expecting ring/function but getting 5. This happens because map takes in a
function on the left. Since there’s no ring around the plus 5 block, it evaluates it to 5
(remember that Snap! fills in blank spaces with 0), and then tries to call map with 5 in
the input slot that takes in functions.

c.

Output:

When map calls a function, it peels away one ringified layer. In this case, then, map will
be trying to input 1, 2, and 3 into a single-ringified function (it only peeled away one
ringified layer), but the ringified function doesn’t take in any inputs. Thus, it’ll just output
the ringified function itself.

Two Roads Diverged in a Wood

In this problem, you are given a map and a starting location, and it is your task to figure out
whether you can reach home from your starting position.

For example, in the map to the right, where arrows represent paths
you can take from one place, path-home would return true if your
starting position is 7, and false if your starting position is 5.

You are given the following helper blocks:

• : returns true if the input place is your home
• : returns true if the input place is a dead end
• : returns the place you will be at if you go left from the input place.

Gives an error if the input place is a dead end.
• : returns the place you will be at if you go right from the input place.

Gives an error if the input place is a dead end.

Here are some example calls to the helper blocks, based on the map above.

1 false true ERROR ERROR false
2 false true ERROR ERROR false
3 false true ERROR ERROR false
4 false true ERROR ERROR false
5 false false 1 2 false
6 true false 3 4 true
7 false false 5 6 true

Now, try writing path-home.

path-home(place):
if home? (place):
 report true
if dead-end? (place):
 report false
else:

report path-home(go-left(place)) or path-home(go-
right(place))

Note: If we switched the order of the base cases above, this function would not work, since a
dead-end can also be our home.

A Little Town in Alabama…

a. Write the code to find the force of a mobile:

 Force(mobile):

if simple? (mobile):
 report mass(mobile) * GRAVITY
else:
 report force(left(mobile)) + force(right(mobile))

b. As a function of the number of objects in the mobile, what is the runtime of Force?

Linear! To convince yourself of this, make a table to keep track of how many steps it takes
to run this block for different numbers of objects.

c. Your solution above was either iterative or recursive. Could you have written it the other
way?

Yes! Anything that can be written iteratively can be written recursively, and vice versa.

Diamonds in the Rough

In the following exercise, you will be coding the square fractal below. We have
provided the first four levels of the fractal. The recursive cases for each level are
represented by bold lines.

Level 1 is 300 pixels on each side. Each of the sides of the four smaller
diamonds are the length of the side of the larger square divided by the square
root of 8. You may assume that the sprite starts off at the top-left corner of each
level, facing right and ends in the same position. (Hint: The repeat block will be
very useful for both the base case and the recursive case)

Solution:

