
CS10 Online Final Solutions(Spring 2017)
There	are	two	questions,	a	Snap!	one	and	a	Python	one.	Save	your	code	for	the	Snap!	question	into	a	Snap!	
file,	and	name	it	FinalYourfirstnameYourlastname.xml (e.g.,	FinalAlanTuring.xml).		For	
the	Python	question,	create	a	new	Python	file	and	name	it	FinalYourfirstnameYourlastname.py
(e.g.,	FinalAlanTuring.py).		Submit	both	files	on	bCourses	under	the	“online”	final	assignment	for	
your	lab	section.		Both	questions	are	independent,	each	worth	10	points.		Retrieve	the	Snap!	starter	file	by	
going	to:	https://bit.ly/2H7NYDl

Snap!	Question:	
You	devise	a	game	to	help	you	fall	asleep	faster.	First,	pick	a	whole	number	N.	Then	start	naming	N,	2	×	N,	
3	×	N,	and	so	on.	Whenever	you	name	a	number,	you	think	about	all	of	the	digits	in	that	number,	and	keep	
track	of	which	digits	(0,	1,	2,	3,	4,	5,	6,	7,	8,	and	9)	you	have	seen	at	least	once	so	far	as	part	of	any	number	
you	have	named.	Once	you	have	seen	each	of	the	ten	digits	at	least	once,	you	fall	asleep.	We	call	this	game	
Knockoff,	since	you’re	trying	to	“knock	off”	all	the	digits	0-9,	in	any	order.	

For	example,	suppose	you	pick	N	=	1692.	You	would	count	as	follows:	
• N	=	1692.	Now	you	have	seen	the	digits	1,	2,	6,	and	9.	
• 2N	=	3384.	Now	you	have	seen	the	digits	1,	2,	3,	4,	6,	8,	and	9.	
• 3N	=	5076.	Now	you	have	seen	all	ten	digits,	and	fall	asleep.	

Write	a	block	to	report	how	many	rounds	it	takes	until	you	fall	asleep	(starting	with	N).	The	chart	below	
shows	the	return	value	for	several	values	of	N;	we	underline	the	numbers	when	they	get	knocked	off.	
It	takes	45	rounds	for	N=2	to	finally	knock	off	the	9	with	the	number	90.	

N	 2N	 3N	 4N	 5N	 6N	 7N	 8N	 9N	 10N	 …	 45N	 	
1692	 3384	 5076	 	 	 	 	 	 	 	 	 	

	
1234567890	 	 	 	 	 	 	 	 	 	 	 	

	
1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 	 	

	
2	 4	 6	 8	 10	 12	 14	 16	 18	 20	 …	 90	

	
You	may	find	the	following	block	helpful.	It	takes	a	set	(a	list	containing	no	
duplicate	elements	whose	elements	are	not	in	any	particular	order)	and	
returns	a	new	set	without	any	of	the	elements	from	the	list	of	elements	
(which	may	contain	duplicates).	E.g.,:	
	
	
	
	
	
	
	
	
	
	

Solution:	

	
	
Python	Question:	
Write	the	fib	function	to	calculate	the	nth	element	in	the	Fibonacci	series	(1,	1,	2,	3,	5,	…).	It	should	work	
for	large	n	(say,	100).	You	can	either	try	to	write	it	iteratively,	or	modify	the	recursive	version	below	to	
remember	(and	use!)	earlier	elements	in	a	dictionary	so	you	aren’t	doing	so	many	redundant	calculations.	

	

Solution:		

def fib(n):
 prev_fib = 1
 current_fib = 1
 while n > 2:
 temp_fib = current_fib
 current_fib += prev_fib
 prev_fib = temp_fib
 n -= 1
 return current_fib

def fib(n):
if n <= 2:
 return 1
else:
 return fib(n-1) + fib(n-2)

>>> fib(1)
1
>>> fib(100)
354224848179261915075

